Добавить в цитаты Настройки чтения

Страница 142 из 190

Интересные результаты были получены также для спектров элементов с более высокими атомными номерами, объяснение которых тем временем существенно продвинулось благодаря работам Зоммерфельда, который ввёл несколько квантовых чисел для описания электронных орбит. В результате с помощью принципа соответствия удалось окончательно выяснить своеобразные правила, управляющие капризным на первый взгляд появлением линий, следующих из комбинационного принципа. Можно сказать, что квантовая теория не только дала простое объяснение комбинационного принципа, но, кроме того, сделала очень много для прояснения той таинственности, которая долгое время царила в применениях этого принципа.

Та же точка зрения оказалась плодотворной при исследовании так называемых полосатых спектров. Эти спектры обусловлены не отдельными атомами, а молекулами. Большое количество линий в этих спектрах обусловлено сложностью движения, связанной с колебаниями атомных ядер по отношению друг к другу и с вращением молекулы как целого. Обсуждаемые постулаты впервые были применены к рассматриваемой проблеме Шварцшильдом. Однако наиболее важный вклад внёс Хейрлингер, многое выяснивший своими важными работами о строении и возникновении полосатых спектров. Его выводы тесно примыкают к обсуждавшейся в начале лекции теории Бьеррума о влиянии вращения молекул на инфракрасные линии поглощения в газах. Совершенно очевидно, что мы уже не имеем права считать, что вращение находит свое отражение в спектрах так, как этого требует классическая электродинамика, а должны принять, что компоненты линий обусловлены переходами между стационарными состояниями, которые отличаются видом вращательного движения. Однако тот факт, что в этом явлении сохраняются существенные черты, предусмотренные классической теорией, является типичным следствием закономерности, определяемой принципом соответствия.

Естественная система элементов

Представления о возникновении спектров, развитые выше, послужили основанием для теории строения атомов элементов, оказавшейся пригодной для выяснения в общих чертах свойств элементов, находящих свое выражение в периодической системе элементов. Эта теория опирается прежде всего на соображения об образовании атома путём последовательного присоединения и связывания электрона в поле ядра. Как мы видели, оптические спектры элементов доставляют нам сведения о протекании последней стадии этого процесса образования атомов.





Представление о характере этих данных, получаемое при более внимательном изучении их, можно составить из рис. 8, на котором схематически изображены орбиты в стационарных состояниях, соответствующих дуговому спектру калия. Кривые показывают формы орбит последнего связанного электрона в атоме калия в стационарных состояниях. Их можно рассматривать как ступени процесса, при котором 19-й электрон оказывается связанным вслед за 18-м электроном, который вместе со всеми предшествующими уже находится на нормальной орбите. Чтобы не усложнять схемы, мы не пытались каким-либо образом изобразить орбиты этих внутренних электронов, отметив только пунктирным кругом область, внутри которой они движутся. Вообще говоря, в атоме с несколькими электронами орбиты имеют очень сложный вид. Вследствие симметричной природы силового поля ядра движение каждого электрона может быть приближённо описано как плоское периодическое движение, на которое накладывается равномерное вращение в плоскости орбиты. Поэтому всякая электронная орбита будет в первом приближении дважды периодической и будет определяться двумя квантовыми числами, подобно стационарным состояниям атома водорода при учёте прецессии, возникающей за счёт изменения массы электрона со скоростью.

Рис. 8