Страница 53 из 62
Но… самый непосредственный анализ преобразований Лоренца показывает, что длина — величина относительная.
Действительно, длина стержня, движущегося со скоростью v, сокращается в направлении движения и определяется выражением:
где l0 — длина стержня, когда он находится в состоянии покоя[71], то есть длина, измеренная в той системе отсчета, в которой стержень покоится. Этот эффект и называется лоренцовым сокращением длины[72].
Для космической ракеты — спутника Солнца — наблюдаемое с Земли сокращение длины равно:
Иначе говоря, ракета укоротилась примерно на 7 стомиллионных долей процента!
Конечно, нет ни малейшей возможности заметить такое сокращение. А космические ракеты — бесспорные чемпионы скорости, если говорить о макроскопических телах.
Поэтому не должно особенно удивлять, что длина тела считалась абсолютной величиной. Иное дело, когда скорости близки к световой. Но пока не начали исследовать элементарные частицы, с такими скоростями не сталкивались.
Вот, собственно, все, что следовало сказать о понятии длины в теории относительности. Однако релятивистская постановка проблемы настолько непривычна, что стоит специально обратить внимание на вопрос, который очень часто приходится слышать: сокращается ли длина на самом деле, или же лоренцово сокращение только кажущееся?
Этот вопрос связан с непониманием существа дела.
Если сказать, что лоренцово сокращение действительно объективно и реально, — это будет правильно. Но тогда может сложиться ошибочное представление, что существует какая-то выделенная система отсчета, в которой все тела имеют максимальную «истинную» длину, а во всех остальных системах она сокращается[73]. Ничего подобного, конечно, нет.
Лоренцово сокращение длины связано только с тем, что длина — относительная величина, зависящая от того, из какой системы отсчета ее определяют.
Спрашивать, действительно ли лоренцово сокращение, это то же самое, что спрашивать, движется ли в действительности измеряемый стержень?
Но если последний вопрос не вызывает недоумений, ибо относительность скорости очень привычна, то относительность длины часто пугает и трудно воспринимается.
По существу же, все дело в том, что очень тяжело менять привычки.
Иногда можно услышать даже, что, утверждая относительность длины, физики противоречат философскому материализму. Подобные заявления продиктованы непониманием как физики, так и философии и не заслуживали бы особого внимания, если бы не отражали все то же нежелание людей изменять привычные наглядные представления. К сожалению, однако, мир устроен таким образом, что приходится приложить известные умственные усилия, чтобы понять его структуру. Последнее философское замечание еще более относится к определению понятия времени.
Сразу сформулируем вывод.
Интервал времени между какими-то двумя событиями оказывается минимальным в той системе отсчета, где эти события произошли в одной точке.
Эта фраза может показаться несколько туманной, и потому используем традиционное оружие популярной литературы — простой пример.
В вагоне поезда Москва — Ленинград происходит одна за другой две световые вспышки.
Пусть по часам, установленным в поезде, промежуток времени между этими вспышками равен Δt0 — скажем, 10 часам.
В системе отсчета «поезд» вспышки произошли в одной точке, и «поездные» часы в том месте, где происходили вспышки, измеряют, естественно, время именно в этой системе отсчета.
Если моменты времени световых вспышек засекать в системе отсчета, «привязанной» к полотну железной дороги, причем опять по часам, находящимся в месте вспышек, то придется использовать двое часов, так как в этой системе вспышки происходят в разных точках (сегодня поезд в Москве, а завтра в Ленинграде!).
Если в момент первой вспышки часы в поезде показывали то же время, что и часы А на перроне Ленинградского вокзала в Москве, то в момент второй вспышки часы в поезде будут показывать меньшее время, чем синхронные с часами А[74] часы В на перроне Московского вокзала в Ленинграде.
Иначе говоря, если ход движущихся часов сравнивать с ходом нескольких неподвижных синхронных часов, то он будет отставать от хода покоящихся. В нашем примере «поездные» часы могут отстать на 1 час. И когда на В будет 9 часов утра, они покажут 8 часов.
Особо подчеркнем, что системы отсчета «поезд» и «полотно дороги» в разобранном примере находились в существенно неравноправных условиях. Одни часы в поезде сравнивались с двумя часами на платформе.
Если опыт видоизменить — вообразить очень длинный поезд, увешанный синхронными часами[75], и платформу с одними часами, — то окажется: при сравнении показаний перронных часов с показаниями «поездных» мы убедимся, что отстают часы перронные.
Поэтому нехорошо, очевидно, говорить: время в движущейся системе отсчета течет медленнее.
Такое утверждение противоречит принципу относительности. Все инерциальные системы отсчета совершенно равноправны, и, конечно, нельзя думать, что в одной системе время течет быстрее, чем в другой.
Когда говорят о лоренцовом сокращении времени, всегда имеют в виду только то утверждение, что было приведено выше[76].
Полную равноправность понятия времени в разных инерциальных системах хорошо поясняет одна иллюстрация.
Представьте две ракеты с радиостанциями на борту. Пусть летчики снабжены физически идентичными часами. Пусть ракеты разлетаются с постоянной относительной скоростью v и каждую секунду по своим часам радиостанция каждой ракеты посылает радиосигналы.
Наблюдатель на ракете № 2, измеряя по своим часам интервалы между моментами приема радиосигналов, посланных ракетой № 1, обнаружит, что они несколько больше одной секунды. А именно:
каждый.
Это растягивание времени между двумя последовательными приемами сигналов определяется эффектом Допплера[77].
Если теперь наблюдатель в ракете № 2 произведет несложный расчет, он заключит, что по его часам n-й сигнал был отправлен в момент времени
секунд.
(Расчет воспроизводить не будем и поверим, что здесь нет ошибки.)
Но поскольку по часам ракеты № 1 n-й сигнал был послан в момент tnN = n секунд, наблюдатель в ракете № 2 заявит, что часы ракеты № 1 отстают.
71
Вывод этого соотношения настолько прост, что его можно продемонстрировать.
Чтобы найти длину движущегося стержня, наблюдатель должен одновременно зафиксировать начальную и концевую точки x1 и x2. Тогда (x2 – x1) и есть длина стержня l.
Чтобы найти связь между l и l0, следует, используя преобразования Лоренца, связать координаты (x11 и x21) начальной и концевой точек в той системе, где он покоится, с соответствующими координатами x1 и x2, определенными в той системе отсчета, где он движется:
Обратим внимание: в правой формуле стоит одно и то же время t1.
Это соответствует тому, что при определении длины движущегося стержня нужно одновременно фиксировать его начальную и концевую точки. Вычитая из нижней формулы верхнюю, получим:
Но (x21 – x11) = l0 — длина стержня, определенная в системе, где он покоится. А (x2 – x1) = l — длина движущегося стержня.
Таким образом
72
Это название принято, поскольку в теории Лоренца (о ней упоминалось в главе XI) предполагалось, что длина тела, движущегося относительно эфира, сокращается; причем формула для сокращения такая же, как в теории относительности. Но физическое содержание формулы сокращения длины у Лоренца (как и всей его теории) совершенно отлично от содержания теории Эйнштейна. Например, в теории Лоренца имеет смысл говорить об абсолютной длине l0 — длине тела, неподвижного относительно эфира.
73
Именно эту идею и развивал Лоренц в своей теории, полагая, что движение тел относительно неувлекаемого эфира вызывает сокращение длины.
74
Двое часов, находящихся в разных точках и неподвижных в данной системе отсчета, синхронны, если они одновременно показывают одинаковое время. При этом понятие одновременности определяется именно относительно этой системы отсчета. Однако с точки зрения наблюдателя из другой системы отсчета эта пара часов не будет синхронна.
75
В этом случае понятие одновременности, необходимое для определения синхронности часов, естественно, определяется в системе отсчета, связанной с поездом.
76
Ввиду большого значения этого положения стоит его повторить… Промежуток времени между двумя событиями минимален в той системе отсчета, где они произошли в одной точке пространства. Этот промежуток времени обозначают как Δτ и называют собственным временем. В любой другой инерциальной системе промежуток времени между этими событиями определяется через Δτ соотношением:
77
Воспользуемся случаем, чтобы напомнить некоторые моменты релятивистской теории эффекта Допплера для электромагнитных волн. На первый взгляд она не очень отличается от классической, и нет оснований говорить о каких-то «удивительных» выводах.
Снова, если источник и приемник двигаются навстречу друг другу, воспринимаемая приемником частота больше, чем если бы они покоились. И так же, как и раньше, если источник и приемник удаляются — воспринимаемая частота меньше. Все это очень напоминает выводы классической теории.
Но есть одно важнейшее отличие. Ясно, что если отброшен неувлекаемый эфир и для электромагнитных явлений справедлив принцип относительности, то не имеет смысла различать два разных случая: 1) источник движется, скажем, навстречу приемнику, а приемник покоится и 2) приемник движется навстречу источнику, а источник покоится. Как только отброшена «абсолютная система отсчета», такое различие теряет всякое содержание.
Изменение частоты определяется только относительной скоростью источника и приемника.
Если быть совсем точным, то надо добавить — той составляющей относительной скорости, что направлена по прямой, проходящей через две точки — «приемник» и «источник».
Не так уж важно, как именно изменяется формула для воспринимаемой частоты по сравнению с классической.
Существенно, что теория эффекта Допплера очень тесно связана с одним из самых поразительных выводов Эйнштейна — замедлением ритма движущихся часов. Поэтому, как уже сообщалось ранее, экспериментальную проверку своей формулы для эффекта Допплера Эйнштейн считал важнейшим опытом для проверки всей теории. Опыт великолепно подтвердил выводы Эйнштейна; причем любопытно, что сами экспериментаторы не понимали и не принимали его теории.