Добавить в цитаты Настройки чтения

Страница 35 из 62



Когда работа закончена, когда не остается сомнений в ее справедливости, все представляется очень простым. Это впечатление бывает особенно четким при поверхностном знакомстве. Но стоит присмотреться внимательней, как видишь, сколько было поисков и сомнений у исследователей, какой тяжелый путь скрыт за этой мнимой простотой. Избитый афоризм «гениальное всегда просто» мало поэтому соответствует истине. Более точно было бы сказать: «Простым кажется все, что уже ясно понято другими». Причем простота видна тем разительней, чем меньше мы сами понимаем, о чем идет речь.

Перейдем ко второй работе, сыгравшей в теории света и эфира исключительную роль.

Интересно, что в какой-то степени она была сделана случайно.

С тех пор как появилась система Коперника, ее сторонники пытались доказать вращение Земли, обнаружив кажущееся годичное движение неподвижных звезд — параллактическое смещение.

Идея наблюдений очевидна.

Когда Земля находится в положении Т′, звезда представляется нам в точке S′. Спустя полгода мы из Т″ увидим ее в точке S″. И за год она совершает движение S′S″S′[39].

Иными словами, видимое движение звезды проявляется в том, что в разные времена года надо направлять телескоп под различными углами к земной поверхности. А это на нашем языке и означает в различные точки неба.

Так как расстояние от Земли до звезд во много раз превышает размеры земной орбиты, годичный параллакс ничтожно мал. Поэтому астрономы XVI столетия, с их несовершенными приборами, заметить его не могли. Ведь наибольший параллакс у самой близкой к нам звезды Proxima (Ближайшая) Центавра равен 0,75″! Под таким углом виден человеческий волос на расстоянии 18 метров![40]

Известный датский астроном Тихо де Браге тщетно пытался обнаружить годичный параллакс Полярной звезды и после неудачных опытов в конце концов стал непримиримым противником учения Коперника.

В XVII столетии точность астрономических наблюдений значительно возрастает и действительно удается наблюдать смещение звезд. Решили, что обнаружен годичный параллакс и получено еще одно подтверждение идеи Коперника.

Но вот Брадлей, изучая годичные смещения многих звезд, приходит к выводу, что это отнюдь не параллактическое смещение. Наблюдаемые движения совершенно не совпадали с теоретическими представлениями.

Не было просто ничего похожего.

Во-первых, абсолютно все звезды, лежащие в плоскости эклиптики, в течение года дважды пробегали одну и ту же дугу, равную 40,9 секунды.

Далее. Все звезды, не лежащие в плоскости эклиптики, описывали на небе эллипсы, большая ось которых также равнялась тем же 40,9 секунды.

Если допустить, что эти движения и есть параллактические смещения, пришлось бы сделать невероятное предположение, что все звезды удалены от Земли на одно и то же расстояние. Впрочем, такой отчаянный шаг тоже не мог спасти положение.

В открытом Брадлеем движении наблюдались такие закономерности, которые уже совсем нельзя было объяснить, считая, что мы видим параллактическое смещение.

Действительно, если видимое движение звезд вызвано параллактическим смещением, то при тех двух положениях Земли, когда Солнце, Земля и звезды находятся на одной прямой, звезда должна наблюдаться в одной и той же точке небосклона. А Брадлей установил, что как раз при положении Земли в этих точках звезда максимально отклоняется от своего среднего положения на небосводе.

Естественно, возник вопрос: какова же причина наблюдаемого движения? Брадлей нашел совершенно неожиданное и изящное решение задачи.

Пусть скорость света конечна, говорит Брадлей. Свет — это поток летящих от звезды на Землю мельчайших частиц — корпускул (Брадлей твердо стоял за корпускулярную теорию света).

Тогда, поскольку Земля двигается по своей орбите со значительной скоростью, наблюдаемая картина звездного неба должна отличаться от реальной.



Пояснить идею Брадлея очень просто.

Предположим, что в какой-то обсерватории проводятся наблюдения и телескоп направлен точно в зенит вертикально к поверхности Земли. Чтобы сделать наш пример «более реальным», вооружим обсерваторию телескопом-рефлектором, в котором верхнее отверстие трубы телескопа ничем не закрыто. В какой-то момент может случиться так, что начнется совершенно отвесный дождь. Если телескоп не убрать, естественно, все зеркало, расположенное внизу трубы, будет равномерно залито дождем. Капли дождя, двигаясь вдоль оптической оси трубы сверху вниз, попадут строго в центр зеркала.

Перенесем теперь мысленно обсерваторию, телескоп и рассеянного астронома на быстро плывущий корабль и снова прикажем начаться совершенно отвесному дождю.

Картина изменится. Пока капля проходит путь от верхнего отверстия трубы до зеркала, телескоп «проезжает» некоторое расстояние, и частица падает не параллельно оси телескопа. Ее «сносит» в направлении, противоположном движению. В результате левый край зеркала будет заливаться больше, чем правый (см. рисунок).

Чтобы частицы дождя двигались по-прежнему параллельно оси телескопа, его необходимо наклонить на некоторый угол вправо. Если бы наблюдателю пришла в голову идея — определять направление падения дождевых капель по оси телескопа в тот момент, когда капли падают параллельно стенкам трубы, то он ошибся бы.

Вернемся теперь к звездам. Мы смотрим на звезду в зените небосклона через диафрагму телескопа. Пусть Земля при этом покоится. Тогда «дождь световых корпускул», падающий от звезды, пройдет точно параллельно оси телескопа и попадет в приемное устройство.

А если Земля движется? Тогда за время падения световых корпускул вдоль трубы телескопа переместится и сама труба; лучи же пойдут не параллельно оси, а под каким-то углом к ней. И попадут они не в приемное устройство, а сместятся в сторону.

Чтобы световые корпускулы двигались параллельно оси телескопа, надо просто наклонить трубу вперед. Тогда в результате совместного движения частиц и трубы лучи света пройдут параллельно оси прибора.

Угол наклона определяется просто. Если скорость световых корпускул — c, а скорость телескопа (скорость Земли) — v, то

tgφ = v/c.

Направление на звезду астроном определяет по направлению оси телескопа в момент, когда изображение звезды находится в центре поля видимости (на оптической оси). В корпускулярной же теории Ньютона сравнительно просто показывается, что изображение предмета окажется на оптической оси прибора только в том случае, когда световые корпускулы от этого предмета летят параллельно оптической оси. А мы сейчас только убедились, что ввиду движения Земли корпускулы двигаются параллельно оси телескопа, когда он направлен не на звезду, а несколько отклонен. Вот что такое аберрация света[41]. Из-за аберрации света мы, следовательно, видим звезду не в том направлении, где она находится.

39

Для простоты рассматривается случай, когда звезда находится в плоскости земной орбиты (в плоскости эклиптики).

Несущественная для нас тонкость! Если звезда находится не в плоскости эклиптики, ее видимое движение происходит по эллипсу, подобному земной орбите, как она представляется со звезды.

40

Между прочим, по годичному параллаксу звезды определяют ее расстояние до Земли. В наши дни параллакс определяют с точностью 0,01″. Это угол, под которым человеческий волос виден с расстояния 1,5 километра!

41

«Аберрация» дословно означает «отклонение», «заблуждение». Поэтому не приходится удивляться, что термин «аберрация» используют также для обозначения совершенно отличных по своей природе физических явлений, связанных с искажением хода световых лучей. Существует еще «хроматическая аберрация», «сферическая аберрация», «продольная аберрация» и еще несколько аберраций.