Добавить в цитаты Настройки чтения

Страница 33 из 62



Конечно, легко сказать, что все это ерунда. Но сказать и обосновать — вещи разные.

А можно попробовать объяснить поляризацию света и с корпускулярной точки зрения. Для этого достаточно ввести гипотезу, что сами световые корпускулы аналогичны магнитикам, а кристалл просто приводит в порядок их расположение. Кстати, автор последней гипотезы не кто иной, как Ньютон. Именно он первый уловил исключительное значение опытов Гюйгенса, опытов, в которых, по его выражению, проявились «изначальные» свойства света.

Короче, не стоит удивляться, что гипотеза поперечности световых колебаний была принята физиками с таким трудом. Она казалась им очень неестественной. Признание поперечных колебаний в эфире означало отказ от модели газообразного эфира! Ведь в газах поперечные волны отсутствуют!

Следовательно, приходилось перестраиваться и представлять эфир каким-то аналогом твердых тел.

Но в этом случае уж совершенно непонятно, как в таком эфире небесные тела двигаются без трения! И это еще не все. Во всех твердых и жидких телах могут распространяться как поперечные, так и продольные волны. А Френель и Араго в начале XIX столетия проделали опыты[36], объяснить которые можно было, только предположив, что продольные колебания в световых лучах совершенно отсутствуют. И это было уже совсем нехорошо!

В механике было доказано, что если на границу раздела двух упругих сред набегает даже строго поперечная волна, в отраженной и преломленной волнах должна иметься продольная составляющая. А в эфире никакой продольной волны не появляется! Отраженный свет состоит из строго поперечных колебаний!

Едва удалось найти удовлетворительную гипотезу, объясняющую этот факт, как физики оказались лицом к лицу перед совершенно удивительными открытиями.

Майкл Фарадей обнаружил, что плоскость поляризации света вращается под действием магнитного поля. Световые и электромагнитные явления оказались тесно связанными между собой. Эфир «световой» оказался по меньшей мере очень близким родичем эфиру «электрическому»!

Глава IX,

Я не знаю, что такое этот эфир.

Начиная с этой главы, мы вступаем, так сказать, в «предгорья» теории Эйнштейна. Все дальнейшее посвящено, по существу, одному вопросу: «Можно ли какими угодно опытами обнаружить покоящийся эфир — выделить абсолютную систему?»

В XIX столетии отношение физиков к гипотезе эфира очень напоминало отношение родителей к единственному балованному ребенку.

Эфиру прощали все: и его совершенно странные свойства сверхтвердого тела (строгая поперечность световых колебаний); и одновременно его исключительную разреженность, вытекающую из полного отсутствия влияния его на движение звезд и планет; и искусственность поведения эфира в сплошных телах (два эфира в исландском шпате?!). Позже вместо гипотезы о двух эфирах была выдвинута гипотеза о различной упругости эфира вдоль разных кристаллографических направлений (Нейман, 1835 г.), но это тоже вряд ли можно рассматривать как счастливую находку.

Физики мирились со всем потому, что без эфира, без какой-то среды немыслимо было представить, как распространяются электромагнитные волны в пространстве.

В наши дни мы довольно спокойно говорим, что само пространство обладает свойством передавать электромагнитные и гравитационные волны. Причем это свойство мы не связываем с наличием какой-то заливающей вселенную среды.

Механические методы эфира отброшены, и вместо них введено новое понятие — понятие поля. Чтобы не вдаваться в тонкости, просто отметим: современная физика отказалась от попыток представлять электромагнитные волны аналогично волнам в механических средах и газах.

Сейчас мы просто констатируем факт: в пространстве могут распространяться волны; эти волны обладают такими-то свойствами.



Мы знаем теперь, что гипотеза, будто пространство заполнено какой-то средой, аналогичной по своим свойствам газам или упругим телам, — эфиром, — несостоятельна, она противоречит опытам.

Короче, в вопросе об эфире физики вернулись к методу принципов. Но думаю, довольно ясно, как тяжело было отказаться от очень наглядной гипотезы эфира — упругой среды, заливающей вселенную.

Небольшое филологическое замечание.

Когда говорят, что теория относительности изгнала из физики эфир, имеют в виду «истребление» среды, заполняющей пространство и построенной из частиц. Сейчас мы утверждаем только то, что через пространство могут передаваться волны. Можно называть такое пространство эфиром, никто особенно не будет возражать; это вопрос сугубо терминологический.

Классический эфир погиб, когда установили, что в оптических явлениях так же, как в механике, отсутствует выделенная система отсчета.

Но прежде чем в этом убедились, прежде чем Эйнштейн создал свою теорию, пришлось потратить двести с лишним лет на поиски. Сотни опытов, десятки теорий, талант и трудолюбие многих поколений физиков подготовили триумф Эйнштейна.

Каждый по мере сил вносил свою долю: и те, чьи работы были похоронены навечно очень скоро после их рождения; и те, чьи труды оставили заметный след в физике.

Пожалуй, нет в истории науки более драматичной повести, чем поиски теории эфира. Несколько раз казалось, что все уже ясно, что все сомнения исчезли. Но проходил десяток лет, и новые опыты ставили под удар теории, столь убедительные в недавнем прошлом.

У нас, естественно, нет возможности даже очень схематично проследить этот великий и тяжелый путь.

Мы ограничимся лишь упоминанием о двух работах, сделанных на заре изучения световых явлений. Они выбраны не столько потому, что сыграли важнейшую роль в истории эфира и учении о свете, сколько потому, что, проследив за замечательными, неожиданными и поразительно смелыми выводами их авторов (в общем сравнительно рядовых ученых), можно почувствовать, что такое физика.

Первая работа.

Датский математик и астроном Олаф Ремер в 1676 году в движении ближайшего спутника Юпитера обнаружил очень странные неправильности: систематически нарушалась периодичность затмений спутника. Наблюдаемая картина представлялась в высшей степени удивительной.

Факт номер один.

Известно, что время одного полного оборота спутника Юпитера постоянно. Наблюдения, проведенные в разные времена года, давали одну и ту же цифру — 42 часа 47 минут 33 секунды. Конечно, иногда получали чуть больше, иногда чуть меньше, но отклонения не превышали пределов ошибок эксперимента, а среднее наблюдаемое значение продолжительности одного оборота оставалось постоянным, что, впрочем, было вполне естественным.

36

Конечно, мы снова отказываемся от разбора этих работ.