Добавить в цитаты Настройки чтения

Страница 30 из 40



Совершенно справедливы и выводы Теслы о том, что ионизация заряженными частицами происходит наиболее эффективно в конце пути заряженной частицы, когда ее энергия уже невелика. С этим и связаны резкая нижняя и размытая верхняя границы полярных сияний. Ученый этого не знал, но уверенно предполагал наличие подобной связи. Согласно этой модели, когда направление межпланетного магнитного поля становится противоположным направлению геомагнитного поля на дневной стороне, начинается процесс так называемого пересоединения. При сближении противоположно направленных силовых линий магнитное поле обращается в нуль, образуя из замкнутой геомагнитной линии и свободной линии межпланетного поля две открытые силовые линии, которые одним концом начинаются на Земле в полярной шапке, а другим — уходят в межпланетное пространство.

Этот циклический процесс современные метеорологи называют магнитосферной суббурей и считают, что в этом случае происходит значительное возмущение всей внешней магнитосферы Земли. Фактически имеет место обрыв части магнитного хвоста, а его остаток поджимается к Земле. В этот момент часть плазмы внешней магнитосферы сбрасывается по силовым линиям в авроральную зону ионосферы. Здесь энергичные ионы и электроны сталкиваются с нейтральными атомами и заставляют их испускать фотоны.

Сегодня мы знаем, что Тесла был вполне прав, считая направление межпланетного магнитного поля постоянно меняющимся достаточно случайным образом. Именно поэтому обычные суббури, связанные с Южным полюсом, случаются несколько раз за сутки, независимо от текущей солнечной активности. Более известные широкому читателю магнитные бури регистрируются реже. Они непосредственно связаны со вспышками солнечной активности, а точнее, с попаданием Земли в зоны аномально интенсивного солнечного ветра и в межпланетные магнитные облака. При этом величина поля в магнитном облаке у орбиты Земли возрастает в десятки раз, а скорость солнечного ветра — до тысячи километров в секунду. Эффект такого увеличения подобен смене легкого ветерка на ураган. Во время сильной ионосферной бури мощнейшие магнитные суббури следуют одна за другой, а авроральная зона расширяется вплоть до умеренных широт.

Так, во время крупнейшей ионосферной бури очередного солнечного максимума, длившейся более суток, полярные сияния наблюдались даже в Москве. При этом энергия, выделившаяся тогда в магнитосфере Земли, составила эквивалент энергии взрыва ста мегатонн тротила. Несомненно, что изобретатель догадывался о скрытой мощи ионосферных ураганов и всячески пытался воздействовать на них с помощью своего метода электрического резонанса.

Надо сказать, что именно ионосферные исследования Теслы подтолкнули в свое время известного фантаста Фредерика Вильяма Брауна к созданию оригинального рассказа «Волновики». В нем повествуется о новой «полевой» форме жизни, проявляющей себя в виде электромагнитных волн радиодиапазона. А рассказал Брауну о странных опытах «повелителя молний» молодой журналист Кеннет Свизи. Беседуя с Брауном, Свизи поведал об одной очень экстравагантной идее Теслы, предполагавшего, что в насыщенной электричеством среде верхних слоев земной атмосферы вполне может существовать особая «радиоэлектрическая жизнь».

Финал произведения построен в трагикомическом ключе, характерном для творчества фантаста-юмориста. Оказывается, что космические Волновики (так зовут пришельцев из ионосферы) питаются искусственным и атмосферным электричеством. Это быстро приводит к исчезновению бытовой и промышленной электроэнергии, пропадают молнии… ну а история человечества возвращается в век пара!

Но так ли уж легко могут преодолеть космические электромагнитные колебания толщу ионосферы?

Тесла считал это непростым вопросом, жизненно важным для дальнейшего развития радиовещания. Он допускал, что в приповерхностном слое — тропосфере — воздух представляет собой смесь нейтральных молекул различных газов (в основном азота, кислорода и углекислого газа). Следовательно, если нас окружает сухой воздух, то его можно считать хорошим изолятором.

Иначе обстоит дело в глубинах ионосферы, думал изобретатель. Там воздушная среда вполне способна проводить электрический ток, поскольку вместо нейтральных молекул и атомов она содержит «электрокорпускулы» (электроны и ионы). Вспомним, что понятие ионов как положительно или отрицательно заряженных частиц возникло гораздо позже первых моделей «атмосферного электричества» Теслы. Тем не менее великий изобретатель правильно ухватил суть дела, считая, что корпускулы электричества должны возникать под воздействием каких-либо внешних факторов из первичных нейтральных атомов и молекул.

Тесла полагал и считал это очень важным обстоятельством, что молекулы воздуха на всем протяжении стратосферы находятся в постоянно сложном движении. Потоком этого непрекращающегося движения должны быть захвачены и электрические корпускулы, т. е. ионы с электронами. Единственно, до чего не дошел изобретатель в своих рассуждениях, — это до анализа баланса противоположных процессов ионизации и нейтрализации, — рекомбинации, — идущих с различной скоростью на разных высотах.



Вот как описывает это видный советский радиофизик Ф.И. Честнов:

«Представьте себе толпу, в которой каждый человек торопится в нужном ему направлении. Люди будут сталкиваться друг с другом почти на каждом шагу. Но вот толпа поредела, стало свободнее; теперь уже столкновение — редкий случай. Примерно то же мы будем наблюдать и в мире молекул.

Вот мы спускаемся ниже и попадаем в более плотные слои. Частицы воздуха здесь гуще, значит, столкновения происходят чаще, и рекомбинация идет быстрее. Поднимаемся выше, в разреженные слои: столкновения частиц становятся реже, а воссоединение ионов и электронов в нейтральные молекулы идет очень медленно.

Что же произойдет, если действие ионизирующего излучения в верхней атмосфере прекратится? Очевидно, электроны снова «вернутся на свои места», ионизированные частицы в конце концов станут нейтральными, а свободные заряды постепенно исчезнут, и воздух потеряет электрическую проводимость.

Если же ионизирующее излучение будет действовать постоянно и с неизменной силой, то появление новых свободных электронов уравновесит их убыль — насыщенность воздуха свободными зарядами меняться не будет».

Именно так возникают замечательные по своей красоте полярные сияния (auroras borealis — по-латыни), давшие свое название этому удивительному природному феномену. Конечно, поверхность Земли не самое лучшее место для наблюдения за полярными сияниями: во-первых, почти всегда их надо наблюдать ночью, когда не мешает солнце, во-вторых, наблюдениям могут помешать облака. Поэтому Тесла предполагал приспособить для наблюдений ионосферных вспышек свои автоматические самолеты, оснащенные фотографической аппаратурой и питаемые волнами «резонансной электроэнергии».

Вопрос об аналогии между полярными сияниями и газовым разрядом всегда волновал изобретателя, тем более что с многочисленными проявлениями его следствий он встречался на каждом шагу в своей лаборатории, насыщенной волнами электричества. Тесла догадывался, что некоторые его исследования подсказывают, что такая аналогия не ограничивается только элементарными актами генерации корпускулярного электричества (ионизации и возбуждения атомов) энергичными частицами, которые происходят и в газовом разряде, и в полярных сияниях.

В позапрошлом веке норвежский физик Бирке-ланд поставил интересный опыт. Он изготовил маленькую модель нашей Земли — шар, который можно было намагничивать. Кроме того, шар был покрыт краской, которая от ударов заряженных частиц начинала светиться.

Тесла повторил эксперимент Биркеланда на новом качественном уровне. Ученый поместил шар в сосуд с разреженным воздухом и «обстрелял» его из ионной пушки потоком заряженных частиц. Пока шар не был намагничен, летящие частицы бомбардировали всю поверхность полушария, обращенного к ионной пушке, и оно равномерно светилось. Но когда шар намагнитили, свечение появилось только у его магнитных полюсов.