Добавить в цитаты Настройки чтения

Страница 5 из 39



В основе возбуждения нервных и мышечных клеток лежит повышение проницаемости мембраны для ионов натрия – открывание натриевых каналов. Внешнее раздражение вызывает перемещение заряженных частиц внутри мембраны и уменьшение исходной разности потенциалов по обе стороны, или деполяризацию мембраны. Небольшие величины деполяризации приводят к открыванию части натриевых каналов и незначительному проникновению натрия внутрь клетки. Эти реакции являются подпороговыми и вызывают лишь местные (локальные) изменения.

При увеличении раздражения изменения мембранного потенциала достигают порога возбудимости, или критического уровня деполяризации, – около 20 мВ, при этом величина потенциала покоя снижается примерно до минус 50 мВ. В результате открывается значительная часть натриевых каналов. Происходит лавинообразное вхождение ионов натрия внутрь клетки, вызывающее резкое изменение мембранного потенциала, которое регистрируется в виде потенциала действия. Внутренняя сторона мембраны в месте возбуждения оказывается заряженной положительно, а внешняя – отрицательно (рис. 1,Б).

Весь этот процесс чрезвычайно кратковременный. Он занимает всего около 1–2 мс, после чего ворота натриевых каналов закрываются. К этому моменту достигает большой величины медленно нараставшая при возбуждении проницаемость для ионов калия. Выходящие из клетки ионы калия вызывают быстрое снижение потенциала действия. Однако окончательное восстановление исходного заряда продолжается еще некоторое время. В связи с этим в потенциале действия различают кратковременную высоковольтную часть – пик (или спайк) и длительные малые колебания – следовые потенциалы. Потенциалы действия мотонейронов имеют амплитуду пика около 100 мВ и длительность около 1,5 мс, в скелетных мышцах – амплитуда потенциала действия 120–130 мВ, а длительность 2–3 мс.

В процессе восстановления после потенциала действия работа натрий-калиевого насоса обеспечивает «откачку» излишних ионов натрия наружу и «накачивание» потерянных ионов калия внутрь, т. е. возвращение к исходной асимметрии их концентрации по обе стороны мембраны. На работу этого механизма тратится около 70 % всей необходимой клетке энергии.

Возникновение возбуждения (потенциала действия) возможно лишь при сохранении достаточного количества ионов натрия в окружающей клетку среде. Большие потери натрия организмом (например, с потом при длительной мышечной работе в условиях высокой температуры воздуха) могут нарушить нормальную деятельность нервных и мышечных клеток, снизив работоспособность человека. В условиях кислородного голодания тканей (например, при наличии большого кислородного долга во время мышечной работы) процесс возбуждения также нарушается из-за поражения (инактивации) механизма вхождения в клетку ионов натрия, и клетка становится невозбудимой. На процесс инактивации натриевого механизма влияет концентрация ионов Са2+ в крови. При повышении содержания Са2+ снижается клеточная возбудимость, а при дефиците Са2+ возбудимость повышается и появляются непроизвольные мышечные судороги.

2.5.2. Проведение возбуждения

Потенциалы действия (импульсы возбуждения) обладают способностью распространяться вдоль по нервным и мышечным волокнам.

В нервном волокне потенциал действия является очень сильным раздражителем для соседних участков волокна. Амплитуда потенциала действия обычно в 5–6 раз превышает пороговую величину деполяризации. Это обеспечивает высокую скорость и надежность проведения.

Между зоной возбуждения (имеющей на поверхности волокна отрицательный заряд и на внутренней стороне мембраны – положительный) и соседним невозбужденным участком мембраны нервного волокна (с обратным соотношением зарядов) возникают электрические токи – так называемые местные токи. В результате развивается деполяризация соседнего участка, увеличение его ионной проницаемости и появление потенциала действия. В исходной же зоне возбуждения восстанавливается потенциал покоя. Затем возбуждением охватывается следующий участок мембраны и т. д. Таким образом с помощью местных токов происходит распространение возбуждения на соседние участки нервного волокна, т. е. проведение нервного импульса. По мере проведения амплитуда потенциала действия не уменьшается – возбуждение не затухает даже при большой длине нерва.

В процессе эволюции с переходом от безмякотных нервных волокон к мякотным произошло существенное повышение скорости проведения нервного импульса. Для безмякотных волокон характерно непрерывное проведение возбуждения, которое охватывает последовательно каждый соседний участок нерва. Мякотные же нервы почти полностью покрыты изолирующей миелиновой оболочкой. Ионные токи в них могут проходить только в оголенных участках мембраны – перехватах Ранвье, лишенных этой оболочки. При проведении нервного импульса возбуждение перескакивает от одного перехвата к другому и может включать даже несколько перехватов. Такое проведение получило название сальтаторного (лат. saltus – «прыжок»). При этом повышается не только скорость, но и экономичность проведения. Возбуждение захватывает не всю поверхность мембраны волокна, а лишь небольшую ее часть. Следовательно, меньше энергии тратится на активный транспорт ионов через мембрану при возбуждении и в процессе восстановления.

Скорость проведения в разных волокнах различна. Более толстые нервные волокна проводят возбуждение с большей скоростью: у них расстояния между перехватами Ранвье больше и длиннее скачки. Наибольшую скорость проведения имеют двигательные и проприоцептивные афферентные нервные волокна – до 100 м/с. В тонких симпатических нервных волокнах (особенно в немиелинизированных волокнах) скорость проведения мала – порядка 0,5-15 м/с.

Во время развития потенциала действия мембрана полностью теряет возбудимость. Это состояние называют полной невозбудимостью, или абсолютной рефрактерностью. За ним следует относительная рефрактерность, когда потенциал действия может возникать лишь при очень сильном раздражении. Постепенно возбудимость восстанавливается до исходного уровня.

3. Нервная система

Нервную систему подразделяют на периферическую (нервные волокна и узлы) и центральную. К центральной нервной системе (ЦНС) относят спинной и головной мозг.



3.1. Основные функции ЦНС

Все важнейшие поведенческие реакции человека осуществляются с помощью ЦНС.

Основные функции ЦНС:

объединение всех частей организма в единое целое и их регуляция;

управление состоянием и поведением организма в соответствии с условиями внешней среды и его потребностями.

У высших животных и человека ведущим отделом ЦНС является кора больших полушарий. Она управляет наиболее сложными функциями в жизнедеятельности человека – психическими процессами (сознание, мышление, речь, память и др.).

Основные методы изучения функций ЦНС – методы удаления и раздражения (в клинике и на животных), регистрации электрических явлений, метод условных рефлексов.

Продолжают разрабатываться новые методы изучения ЦНС: с помощью так называемой компьютерной томографии можно увидеть морфофункциональные изменения мозга на различной его глубине; фотосъемки в инфракрасных лучах (тепловидение) позволяют обнаружить наиболее «горячие» точки мозга; новые данные о работе мозга дает изучение его магнитных колебаний.

3.2. Основные функции и взаимодействия нейронов

Основными структурными элементами нервной системы являются нервные клетки или нейроны.

3.2.1. Основные функции нейронов

Через нейроны осуществляется передача информации от одного участка нервной системы к другому, обмен информацией между нервной системой и различными участками тела. В нейронах происходят сложнейшие процессы обработки информации. С их помощью формируются ответные реакции организма (рефлексы) на внешние и внутренние раздражения.