Добавить в цитаты Настройки чтения

Страница 37 из 64

1. Код триплетный. Это означает, что кодон (функциональная единица, кодирующая аминокислоту) состоит из трех букв (оснований).

2. Код неперекрывающийся, т. е. соседние кодоны представлены отдельными самостоятельными триплетами.

3. Код вырожденный, т. е. каждая аминокислота кодируется более чем одним кодоном.

4. Число триплетов, которые не кодируют ни одной аминокислоты, т. е. «бессмысленных», мало – всего три из 64.

5. Последовательность расположения кодонов в гене определяет последовательность расположения аминокислотных остатков в полипептидной цепи, кодируемой данным геном.

6. Код универсален, т. е. все живые существа используют один и тот же код для записи генетической информации. Это служит прямым доказательством единства происхождения живой материи. Полный словарь РНК-аминокислотного кода представлен на рис. 41.

Рис. 41. Генетический код

Одновременно с расшифровкой генетического кода происходило и изучение механизмов, с помощью которых осуществляется реализация генетической информации, заключенной в генах. Было обнаружено, что биосинтез белка осуществляется на особых структурах – рибосомах, а информация к ним от генов поступает через особых посредников – матричные РНК (мРНК), расположение кодонов в которых и несет программу сборки аминокислот в полипептидную цепь. Было установлено также, что хромосома состоит из особых функциональных единиц – оперонов, и в общих чертах были выяснены механизмы, с помощью которых регулируется их работа. В результате всех этих исследований стало очевидным, что генетическая система обладает уникальными свойствами, во многом обусловленными двунитевой структурой молекулы ДНК. Эти свойства заключаются в способности генетической системы к: 1) самоудвоению с помощью механизма саморепликации; 2) самовыражению (экспрессии) с помощью регулируемого синтеза мРНК; 3) самообновлению с помощью мутаций, рекомбинаций и транспонируемых элементов; 4) самозащите (самоисправлению) с помощью механизмов ревизии, репарации, супрессии и др.

Примечательно, что все эти функции контролируются специальными собственными генами соответствующей генетической системы. Исключительное значение, которое принадлежит генам в происхождении и эволюции жизни, диктует необходимость дать этому понятию определение.



В узком и специальном понимании ген представляет собой структурную единицу ДНК, расположение кодонов в которой детерминирует первичную структуру соответствующей полипептидной цепи. Но это определение не очень точно, так как существуют гены не только ДНКовые, но и РНКовые. Кроме того, некоторые гены вирусов и эукариот состоят из экзонов (кодирующих участков) и интронов (нетранслируемых участков). Например, сборка полных генов иммуноглобулинов и рецепторов Т-лимфоцитов происходит в результате сложной внутригенной рекомбинации в эмбриональном периоде. Кроме того, в одном и том же фрагменте ДНК может быть по крайней мере два гена с разными рамками считывания. Следовательно, структура гена сложнее, чем ранее предполагалось. Он не всегда является строго ограниченным и пространственно фиксированным участком хромосомы. Так называемые транспонируемые генетические элементы способны в интактной форме перемещаться из одного генома в другой. Наконец, для функционирования структурных генов требуется участие особых регуляторных генетических элементов – регуляторов, операторов, промоторов и т. п. Однако гены – это структуры, свойственные только живой материи. Поэтому в определении понятия гена следует исходить из той фундаментальной роли, которую он играет в живой материи.

Ген представляет собой универсальную организующую структурную единицу живой материи, которая, благодаря содержащейся в ней закодированной информации, обеспечивает единство и многообразие всех форм существования жизни, ее непрерывность и эволюцию. Ген является единственным носителем и хранителем жизни, а его продукт – белок – определяет способ и форму существования жизни (А. И. Коротяев). Любой объект природы, имеющий набор собственных генов, следует рассматривать как живой организм. В связи с этим главным критерием, отличающим живое от неживого, является наличие у живого собственной генетической системы. Именно она обусловливает ту целесообразность поведения живых существ, которая отличает их от неживых систем. С этих позиций жизнь можно определить как форму существования всех объектов природы, обладающих собственными геномами, которые и определяют многообразие организмов, их наследственность и эволюцию (А. И. Коротяев). В основе единства и многообразия форм жизни лежит единство генетического кода и многообразие геномов живых существ. Под генетической системой понимают совокупность всех генов данного живого существа, характеризующуюся определенным уровнем структурной организации и особенностями экспрессии, т. е. реализации заложенной в генах информации. В соответствии с этим можно выделить следующие основные этапы эволюции генетической системы: кодон → ген → оперон → геном вирусов и плазмид → хромосома прокариот (нуклеоид) → хромосомы эукариот (ядро).

Очень часто, говоря о генетической системе, употребляют термин «геном». Под геномом понимают всю совокупность нуклеотидов, содержащихся в хромосоме или в наборе хромосом данного индивидуума. Объем генома у представителей различных царств жизни очень сильно варьирует. Именно от объема генома, который определяет возможное количество генов, и зависит степень сложности структурной организации данного индивидуума и, соответственно, уровень и характер проявления им своей жизни.

Под генотипом понимают всю совокупность имеющихся у данного существа индивидуальных генов. У плазмид, вирусов и бактерий бQольшая часть нуклеотидов ДНК входит в состав генов, поэтому размеры геномов у них выражают либо в молекулярной массе соответствующей геномной нуклеиновой кислоты, либо в количестве нуклеотидных пар, содержащихся в геномной нуклеиновой кислоте, либо в количестве имеющихся у них генов. Все эти значения сопоставимы, так как в среднем каждый ген состоит примерно из 1000 пар нуклеотидов, а вес одного нуклеотида ДНК составляет около 500 дальтон. Например, геном вируса гепатита В представлен двунитевой ДНК с м. м. 1,6 МД. Этот вирус имеет самое маленькое число генов среди возбудителей заболеваний человека. Его геном состоит всего из четырех генов (S, C, P и X). Геном вируса – возбудителя СПИДа представлен двумя идентичными молекулами РНК, которые состоят из 9213 нуклеотидов, образующих 9 генов. Геном бактериофага φХ174 состоит из 9 генов, у бактериофага Т4 – из 200 генов, у F-плазмиды – из 90 генов (94,5 тысяч пар нуклеотидов); у хламидий – из 400 – 600 генов, у риккетсий – из 1000 генов. Хромосома E. coli имеет молекулярную массу 2,8 ⋅ 109 дальтон и содержит около 4,3 тысяч генов.

ДНК большинства растений и животных состоит из нескольких миллиардов пар нуклеотидов. Отличительная черта их геномов состоит в наличии в составе хромосомной ДНК помимо кодирующих последовательностей структурных генов некодирующих последовательностей и большого объема так называемых повторяющихся последовательностей нуклеотидов. На долю повторяющихся последовательностей, функция которых не известна, приходится от 10 до 70 % всего генома; у млекопитающих эта доля составляет в среднем 30 – 50 %.

Общий объем ДНК (генома) варьирует у разных ветвей эукариот. Геном человека составляет около 3 ⋅ 109 нуклеотидных пар (н. п.). Этого количества достаточно для образования 3,0 ⋅ 106 генов. В действительности же, согласно последним данным, генотип человека содержит около 30 000 – 35 000 генов, многие их которых уже картированы. Следовательно, понятия «геном» и «генотип» не равнозначны.

Под фенотипом данного индивидуума понимают всю совокупность реализованных у него генетически детерминированных признаков, т. е. индивидуальное проявление генотипа. При изменении условий существования фенотип (например, у бактерий) изменяется при сохранении генотипа.