Добавить в цитаты Настройки чтения

Страница 2 из 5



Но не только служители церкви возражали против научного переворота Коперника, многие коллеги сомневались в правильности его теории. Дело в том, что Коперник считал, что планеты движутся по правильным круговым орбитам (на самом деле по эллипсам), и в соответствии с этим составлял таблицы. Наблюдения показали, что таблицы ошибочны, в них едва ли не больше погрешностей, чем в таблицах Птолемея. Этот факт сделал многих ученых противниками гелиоцентрической системы мира Коперника. Необходимые корректировки в таблицы и расчеты внесли последователи ученого.

Самым знаменитым учеником Коперника стал итальянский ученый Галилео Галилей. Он сразу принял модель, предложенную астрономом, а впоследствии дополнил ее собственными открытиями.

В начале XVII в. голландские инженеры изобрели подзорную трубу. Ознакомившись со схемой ее конструкции, Галилей по тому же принципу изготовил телескоп для наблюдения за звездным небом. Первый из приборов астронома увеличивал объекты всего в три раза, но постепенно ему удалось довести линзы до 32-кратного увеличения. Благодаря этому астроном обнаружил, что Млечный Путь, ранее считавшийся однородным небесным объектом, состоит из отдельных звезд. Он увидел разницу между планетами и звездами: последние не увеличивались в диаметре даже при наблюдении в телескоп. Это означало, что расстояние до них на много порядков больше, чем расстояние до планет. По поводу планет Галилей тоже сделал важные открытия, ему удалось понять, какие из них находятся ближе к Солнцу, чем Земля, а какие дальше.

Галилей разглядел горы и впадины на Луне и темные пятна на Солнце; он заметил, что пятна перемещаются, и пришел к заключению, что Солнце, как и Земля, вращается вокруг своей оси. Он понял, что Луна не светится, а лишь отражает падающий на нее солнечный свет. Ему удалось обнаружить у Юпитера четыре спутника, позже их назвали в его честь Галилеевыми. Еще одна находка Галилея относилась к Венере: он увидел, что у этой планеты, как и у Луны, есть фазы.

После того как Галилей выпустил книгу «Диалоги о двух главнейших системах мира», на него обрушился гнев инквизиции. Гелиоцентризм был официально запрещен как вредная и опасная ересь, к Галилею применили пытки и заставили его публично отказаться от своих взглядов.

Изобретение телескопа позволило астрономам в прямом смысле приблизиться к тайнам звездного неба. Вплоть до XVII в. наблюдения за небесными объектами были случайными и не систематизированными. Но с того момента, как телескопы стали доступны, сотни энтузиастов стали вести регулярные наблюдения и делать заметки. Астрономия становилась точной наукой.

Одним из первых систематизацией и классификацией звездного неба занялся астроном из Дании Тихо Браге. Ему удалось не только усовершенствовать существующие астрономические приборы, но и создать множество собственных, облегчивших наблюдения и расчеты. В течение 20 лет Браге практически ежедневно регистрировал положение на небе планет, Луны и Солнца; этот титанический труд позволил создать точнейшие таблицы. Кроме того, Тихо Браге составил каталог звезд, включивший в себя около тысячи объектов. Ему же принадлежит честь открытия сверхновой звезды в созвездии Кассиопеи и доказательство того, что комета – это небесное тело, а не атмосферное явление.

1.3. Небесная механика Ньютона и законы движения небесных тел

Наблюдения и измерения Тихо Браге позволили его ученику, немецкому ученому Иоганну Кеплеру, сделать следующий шаг в развитии астрономии.

Геоцентрическая система мира Птолемея и гелиоцентрическая система Коперника

Рассчитывая орбиту Марса, Кеплер обнаружил, что она представляет собой не окружность, как считал Коперник и другие ученые, а эллипс. Поначалу он не распространял этот вывод на другие планеты, но позже понял, что не только Марс, а все планеты имеют эллипсоидную орбиту Таким образом был открыт первый закон движения планет Кеплера. В современной формулировке он звучит так: каждая планета Солнечной системы обращается по эллипсу, в одном из фокусов которого находится Солнце.



Второй закон движения планет явился логичным следствием первого. Еще до формулировки первого закона, наблюдая за перемещением Марса, Кеплер заметил, что планета движется тем медленнее, чем дальше она находится от Солнца. Эллиптическая форма орбиты полностью объясняет эту особенность движения. За равные промежутки времени прямая, соединяющая планету с Солнцем, описывает равные площади – это второй закон Кеплера.

Второй закон объясняет изменение скорости движения планеты, но не дает никаких расчетов. Формула, позволяющая вычислить, с какой скоростью вращаются планеты и какое время занимает их путь вокруг Солнца, заключается в третьем законе Кеплера.

Исследования Кеплера поставили точку в споре между системами мира Птолемея и Коперника. Он убедительно доказал, что в центре нашей системы находится Солнце, а не Земля. После Кеплера в научном мире больше не предпринимались попытки реанимировать геоцентрическую систему.

Точность трех законов движения планет, открытых Кеплером, подтвердили многочисленные астрономические наблюдения. Тем не менее основания и причины этих законов оставались неясными до тех пор, пока в конце XVII в. не проявился гений Ньютона.

Всем известна история о том, как Ньютон открыл закон всемирного тяготения: ему на голову упало яблоко, и Ньютон понял, что яблоко притянула к себе Земля. В расширенной версии этой легенды присутствует еще и Луна, на которую смотрел ученый, сидя под яблоней.

После падения яблока Ньютон осознал, что сила, заставившая яблоко упасть, и сила, удерживающая Луну на земной орбите, имеет одну и ту же природу.

На самом деле, конечно, все было далеко не так просто До открытия знаменитого закона Ньютон много лет посвятил изучению механики, закономерностей движения и взаимодействия между телами. Он был не первым, кто предположил существование сил тяготения. Об этом говорил еще Галилео Галилей, но он считал, что притяжение к Земле действует только на нашей планете и простирается всего лишь до Луны. Кеплер, открывший законы движения планет, был уверен, что они работают исключительно в космосе и не имеют отношения к земной физике. Ньютон же смог объединить эти два подхода – он был первым, кто осознал, что физические законы, в первую очередь закон всемирного тяготения, универсальны и применимы ко всем материальным телам.

Суть закона всемирного тяготения сводится к тому, что между абсолютно всеми телами во Вселенной существует притяжение. Сила притяжения зависит от двух главных величин – массы тел и расстояния между ними. Чем тяжелее тело, тем сильнее оно притягивает к себе более легкие тела. Земля притягивает Луну и удерживает ее на своей орбите. Луна тоже оказывает на нашу планету определенное воздействие (оно вызывает приливы), но сила притяжения Земли, за счет большей массы, значительнее.

Кроме закона всемирного тяготения, Ньютон сформулировал три закона движения. Первый из них называют законом инерции. Он гласит: если на тело не воздействует сила, оно будет оставаться в состоянии покоя или равномерного прямолинейного движения. Второй закон вводит понятие силы и ускорения, и эти две величины, как доказал Ньютон, зависят от массы тела. Чем больше масса, тем меньшим будет ускорение при определенной приложенной силе. Третий закон Ньютона описывает взаимодействие двух материальных объектов. Самая простая его формулировка гласит: действие равно противодействию.

Открытия, совершенные Исааком Ньютоном, и выведенные им формулы дали астрономии мощный инструмент, позволивший продвинуть эту науку далеко вперед. Многие явления, не имевшие раньше объяснений, раскрыли свою природу. Стало понятно, почему планеты вращаются вокруг Солнца, а спутники вокруг планет, не улетая в открытый космос: их удерживает сила притяжения. Скорость движения планет остается равномерной благодаря закону инерции. Округлая форма небесных тел также получила свое объяснение: она приобретается благодаря гравитации, притяжению к более массивному центру.