Страница 9 из 9
Как показал исторический ход длительной дискуссии, значительная часть выступлений ограничивалась сравнительно узкой постановкой вопроса, а именно: элиминирует ли статистический тип закономерности традиционно признаваемый классической наукой динамический тип закона? В тесной связи с этим вопросом ставился также другой: является ли однозначность атрибутивной характеристикой закона вообще? Их взаимозависимость выявляется, скажем, в том обстоятельстве, что из тезиса об однозначности и строгой определенности закономерности нередко выводилось отрицание объективного и универсального содержания статистических закономерностей.
В дальнейшем изложении я покажу более конкретный характер обсуждения поставленных здесь вопросов. Как это часто принято в теоретическом познании, автор намерен обратиться прежде всего к тем исходным идеализациям, которые используются при формировании закономерностей того и другого типа, и сопоставить последние под углом зрения их направленности на решение задач системного анализа.
С формальной стороны различие между динамическими и статистическими законами состоит в том, что математическое выражение статистических закономерностей опирается на понятие вероятности. Тогда как динамические законы описываются в форме дифференциальных уравнений либо однозначных функциональных зависимостей. Учитывая это обстоятельство правомерно говорить о поэлементном подчинении динамическим законам всех объектов некоторой рассматриваемой совокупности. В качестве таких элементов часто рассматривают состояния изменяющего во времени материального явления или процесса. Кроме того, в случае динамических законом говорят о жестко детерминированном, строго определенном характере этого подчинения.
В абстрактно-математическом плане статистическая форма зависимости для некоторой упрощенной ситуации также может быть выражена в виде функции. Однако таковая обладает рядом специфических особенностей, важнейшие из которых, например, в свое время М. Смолуховский определил следующим образом. Если статистический закон представить как функцию y=f(x), то должны выполняться такие указания: 1) небольшие изменения «Х» в общем вызывают большие изменения «У»; 2) совокупности таких группировок «Х», которым, приблизительно, соответствует одна и та же группировка значений «У», неизмеримо более многочисленны, чем совокупность группировок «Х», которым соответствует заметно отклоняющееся распределение значений «У».[44]
Очевидно, что первое из названных свойств выводит данную функцию из класса таких, для которых приложим принцип: ограничение приращения аргумента ограничивает область изменения функции. Следовательно, статистическая зависимость не может быть описана в дифференциальной форме, поскольку здесь неприложимо математическое понятие предела. Второе же свойство подчеркивает новый тип устойчивости, обнаруживаемый у данной функции, для выражения которой необходимо учитывать массовость рассматриваемого явления.
Отмеченный здесь характер соответствия между изменениями аргумента «Х» и функции «У» совпадает, по существу, с требованием непрерывности вероятностной функции распределения начальных данных. На этот признак указывали, например, А. Пуанкаре и Г. Рейхенбах.[45] Смысл названного требования состоит в том, что при общей устойчивости некоторого комплекса начальных условий реализации данного явления из него нельзя исключить факторы, обуславливающие вариации отдельных элементов массового явления. Ибо эти факторы невозможно изолировать или проконтролировать.[46]
Конец ознакомительного фрагмента.
Текст предоставлен ООО «ЛитРес».
Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.
Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.
44
Смолуховский М. «О понятии случайности и о происхождении законов вероятностей в физике, – Ж-л «Успехи физических наук», 1927, т. VII, вып.5, с. 344–345.
45
Reichenbach H. Kausalitat und Wahrscheinlichkeit. – «Erke
46
Смирнов Н. В., Дунин-Берковский И. В. Курс теории вероятностей и математической статистики. М., 1965, с.15.