Страница 8 из 35
Так спектроскоп помог подтвердить справедливость и глубочайшее значение закона, открытого нашим гениальным соотечественником.
Спектральный анализ веществ в современной промышленности
Открытия, о которых здесь рассказывается, происходили почти сто лет назад. Но плоды их в больших масштабах пожинаются только в последние десятилетия. В то время о спектральных свойствах вещества знали только ученые. В наше время спектральный анализ веществ широко применяется в промышленности.
Современная промышленность немыслима без точного и быстрого контроля за качеством обрабатываемых материалов и выпускаемой продукции. А в этом деле спектральный анализ вещества незаменим.
Так, промышленность в наше время предъявляет исключительно высокие требования к качеству металлов. Современные машины и инструменты работают в самых разнообразных режимах температур, давлений, скоростей, электрических и магнитных полей. Возьмем, к примеру, режущий инструмент. При огромных скоростях резания металлов возникают высокие температуры, при которых обычная сталь может потерять свою закалку. Нужна специальная инструментальная сталь. Она не должна снижать своих режущих свойств даже при температуре в 600 градусов. В других случаях нужна сталь, устойчивая к действию кислорода, неокисляющаяся. В двигателях внутреннего сгорания выпускные клапаны работают при очень высокой температуре. Сталь, из которой вырабатываются клапаны, должна быть жароупорной. В динамомашинах и трансформаторах необходима сталь, которая может быстро и почти полностью терять намагниченность. Орудийная сталь должна быть особенно прочной на разрыв. Автомобильная и особенно авиационная промышленность предъявляет к металлам свои требования. Применяемые ими металлы, кроме свойств, необходимых в любом машиностроении, должны обладать еще одним свойством — легкостью. Особо высокие требования к качеству материала выдвигает современная ракетная техника, и особенно в отношении свойств жароупорности. Существуют тысячи различных марок металлов, используемых в современной промышленности.
Но в природе нет металлов, удовлетворяющих всем требованиям, которые предъявляет к ним человек. Сталь подходит для авиамотора по прочности, но тяжела. Алюминий легок, но не прочен. Так бывает во многих случаях: подходят одни свойства металла, но не годятся другие.
Человек сам создает металлы, отвечающие его многообразным требованиям. Он упрочняет легкий алюминий, добавляя к нему небольшие дели «присадок» — кремния, марганца, магния, меди. Соединяя железо с углеродом, хромом и кремнием, он выплавляет жароупорную сталь для электропечей, для выпускных клапанов моторов. Добавляя к обычной стали вольфрам, хром и ванадий, он превращает ее в быстрорежущую, инструментальную.
Тысячи различных сортов сплавов применяются в современной промышленности. Из природных, не всегда подходящих материалов человек создает новые материалы с теми свойствами, которые ему нужны.
Экспресс-контроль металлических сплавов
Свойства сплавов зависят от того, в каком соотношении взяты исходные материалы. Достаточно незначительного изменения доли одного из составляющих металлов, как свойства сплавов резко меняются.
Поэтому в промышленности сильно возросли требования к контролю за составом металлических сплавов. Этот контроль нужен во всех стадиях производства: при плавке металла, при пуске металлических заготовок в обработку, при приемке собранных машин.
Современная промышленность отличается высокими темпами работы, большими требованиями к точности и качеству изделий, массовостью производства. К контролю она предъявляет особые требования: он должен быть дешевым, чувствительным и, что особенно важно, быстрым.
Рис. 18. Образование электрической дуги между испытуемым образцом и стандартным электродом
Если бы контрольная лаборатория установила, что плавка непригодна только через неделю после ее окончания, такой контроль принес бы мало пользы. Анализ плавки нужно дать через несколько минут после получения пробы, чтобы в случае необходимости можно было исправить состав сплава в самом ходе плавки. Анализ состава заготовок ценен, когда он производится на ходу, до их обработки, чтобы избежать непроизводительного труда и брака в готовых изделиях. Контроль должен итти параллельно с производством, не задерживая его. Это должен быть экспресс-контроль.
Таким незаменимым экспресс-контролем за качеством металлов и стал спектральный анализ сплавов.
Производится он так. Между образцом взятого для анализа сплава и стандартным электродом создается электрическая дуга (рис. 18). Стандартный электрод делается из того металла, который составляет основу сплава. Так, при контроле сталей он берется из железа, при контроле латуни — из меди. Это делается для того, чтобы спектр стандартного электрода не вносил в спектр испытуемого образца никаких новых линий и не искажал его.
В электрической дуге образуются раскаленные пары сплава и стандартного электрода. Пары излучают спектр. Этот спектр испускания рассматривается в спектроскоп, специально приспособленный для исследования нужных участков спектра. Его называют стилоскопом, что значит — прибор для исследования сталей.
Если исследуется сталь, в стилоскопе видны линии излучений железа и других составных частей сплава.
Процентное содержание этих частей определяется по яркости линий. Чем выше в сплаве доля атомов данного элемента, тем ярче будут спектральные линии этого элемента.
Рис. 19. Определение процентного содержания хрома в стали по яркости линии хрома
Приемы определения яркости линий присадочных металлов различны. Наиболее ходовой прием — сравнение этих линий по яркости со специально избранными линиями железа в той же картине, видимой в стилоскопе. Если линия хрома 4254,3Å столь же ярка, как и линия железа 4247,4Å, то хром составляет в сплаве 0,12 процента. Если та же линия хрома несколько ярче, чем линия железа 4260,5Å, то хрома в сплаве около 6 процентов (рис. 19).
Точно так же определяют количества других металлов-присадок. Полный спектральный анализ сплава из 6—7 металлов занимает 2—3 минуты.
В настоящее время разработаны и широко применяются и другие приемы экспресс-анализа. Очень быстро и точно можно определить состав сплава путем сравнения его спектра со спектрами стандартных образцов сплавов, состав которых известен заранее.
Экспресс-контроль сплавов в ходе производства — наиболее показательный пример практического применения спектроскопа. Так наука о свете помогает решать важную народнохозяйственную проблему.
Рассказы света о далеких звездах
Сплошной спектр твердых веществ
Читатель, вероятно, обратил внимание на то, что линейчатые спектры ученые получали от раскаленных паров металлов. Физики рассмотрели также спектры и от твердых раскаленных металлов. Всякий по опыту знает, что металлы при нагревании краснеют, а затем, раскалившись, испускают белый свет. Таков, например, свет от раскаленного металлического волоска электрической лампочки. Каков же вид спектров у раскаленных твердых веществ?
Если их свет пропустить сквозь призму, то на экране засветятся не отдельные цветные линии, а широкая разноцветная полоса. В этой полосе лежат лучи всевозможных длин волн, от 4000 до 8000 ангстрем.
Такой спектр, в отличие от линейчатого, испускаемого парами металлов, называют сплошным. Итак, спектр твердых раскаленных веществ — сплошной спектр.
Темные линии в солнечном спектре
Долгое время солнечный спектр тоже считали сплошным. Но уже в начале прошлого столетия (1817) физики разглядели в солнечном спектре разрывы—темные линии. Эти темные линии по имени немецкого ученого Фраунгофера (1787—1826), впервые изучавшего их, были названы фраунгоферовыми (см. приложение III). Вскоре их насчитали в солнечном спектре несколько тысяч. Наиболее четко выраженные линии были названы латинскими буквами: А, В, С, D и т. д. Эти линии всегда обнаруживались в солнечном спектре при подходящих условиях опыта. Они соответствуют излучениям с вполне определенной длиной волны. Линия А, например, на самом краю красной части спектра соответствует длине волны в 7608Å, линия В в красной части спектра — длине волны в 6870Å, линия С в оранжевой части спектра — длине волны в 6568Å, линия D1 в желтой части спектра — длине волны 5896Å. Есть еще линия D2 — тоже в желтой части спектра, очень близкая к предыдущей, которая почти сливается с ней; она соответствует длине волны 5890Å.