Добавить в цитаты Настройки чтения

Страница 28 из 35

На помощь приходят опять преобразователи света — экраны с подходящими фосфорами. Изображения внутренних органов человека, полученные с помощью рентгеновского излучения, падают на экран и вызывают видимое свечение фосфора, преобразуются в видимые изображения. Пулю, засевшую в органах, можно осмотреть со всех сторон, как если бы она сидела в прозрачном желатине.

Современная техника предъявляет строгие требования к тому, чтобы отливка, из которой будет сделана работающая деталь механизма, была внутри однородна, не имела трещин, раковин, инородного вещества. «Осветить» внутренность металла можно только с помощью коротковолновых рентгеновских лучей. Если внутри металла есть трещины, они нарушат ход лучей, трещина будет изображена на фотопластинке. Однако фотографирование — процесс долгий, он непригоден при современных темпах производства. На помощь приходит умение человека преобразовывать свет. На место фотопластинки ставится экран из фосфоров. На нем изображение дефектов металла можно наблюдать визуально. Контроль за качеством металла становится удобным и, главное, быстрым.

Люминесцентный анализ на производстве

Подобно тому как существует множество марок металлических сплавов с разнообразными свойствами, так имеется и множество сортов масел и бензинов.

Возьмем, например, масла. Для различных условий работы требуются масла, различные по своим свойствам. Смазочные масла различаются по вязкости, удельному весу, температуре воспламенения и температуре застывания, по стойкости к окислению и по другим физико-химическим свойствам. Вырабатываются различные группы смазочных масел: индустриальные, судовые, турбинные, компрессорные, моторные, цилиндровые и другие. А каждая группа в свою очередь делится на ряд подгрупп (авиационные, швейные, оружейные и другие) и множество марок.

В производстве и эксплуатации масел важно быстро определять их сортность. Как это можно делать? Химический анализ с помощью обычных химических реакций занял бы слишком много времени.

На помощь опять приходит наука о свете. Но при анализе масел описанные выше приемы не пригодны. Масла представляют собой органические соединения; их нельзя сильно нагревать, при высокой температуре они либо распадаются на составные части, либо воспламеняются. Поэтому при спектральном анализе масел не нагревают, а используют их свойство светиться под действием падающего ультрафиолетового света, т. е. применяют люминесцентный анализ.

Люминесцентный анализ весьма чувствителен. Достаточно присутствия в одном кубическом сантиметре одной стомиллиардной доли грамма примеси другого масла, как это скажется на спектре люминесценции. В силу этого обнаруживаются малейшие различия в сортности исследуемых масел.

Точно так же сортируется оптическое стекло. Существует несколько десятков сортов оптического стекла. Каждый из них пригоден для одних оптических приборов и не годится для других. Но по внешнему виду они не отличаются друг от друга. Зато в ультрафиолетовых лучах они дают различное видимое свечение. Сортность стекол проверяется в ходе производства с помощью люминесцентного анализа.

Люминесцентный анализ широко применяется в советской промышленности. Методом люминесцентного анализа контролируют сортность и качество изделий в строительной, пищевой, резиновой промышленности и в ряде других. Это очень быстрый и надежный, простой и дешевый способ контроля.

Задача преобразования длинноволновых излучений в видимый свет





В естественных преобразователях света — люминесцентных веществах — преобразуется свет с длиной волны более короткой, чем у видимого, в свет видимый. Однако практические потребности выдвигают задачу преобразований иного рода, а именно, длинноволновых излучений — в видимый свет. Такая потребность возникает в тех случаях, в которых излучение используется как передатчик какой-либо информации, которую он несет издалека, проходя при этом сквозь толщу атмосферы, и которую надо в пункте приема превратить в зрительный образ. Ультрафиолетовое излучение в качестве передатчика информации в этом случае не годится, оно относительно быстро поглощается атмосферой. Напротив, инфракрасное (или же радио-) излучение атмосферой мало или вовсе не поглощается. Отсюда и возникает задача найти способ преобразования длинноволнового (малочастотного) света в свет видимый, с меньшей длиной волны.

Задача эта существенно отличается от рассмотренной ранее. Ранее задача была проще. В самом деле, частота любых ультрафиолетовых (и тем более рентгеновских) излучений больше частоты видимого света. В силу этого и энергия фотона ультрафиолетового света больше энергии фотона видимого света. Энергии фотона ультрафиолетового света хватает с избытком для такого возбуждения молекулы люминесцентного вещества, которое в последующем приводит к испусканию фотонов видимого света (с меньшей энергией). Не то в случае задачи преобразования инфракрасного излучения в видимый свет. Частота, а стало быть, и энергия фотона инфракрасного излучения меньше частоты и энергии фотона видимого света. Энергии фотона инфракрасного излучения недостаточно для такого возбуждения молекулы вещества, которое привело бы в последующем к испусканию ею фотона видимого света. Значит, если мы хотим, чтобы инфракрасные излучения преобразовывались в видимый свет, необходимо создать источник добавочной энергии.

Электронно-оптические преобразователи света

Опишем кратко один из способов преобразования инфракрасного света в видимый, с помощью так называемых электронно-оптических преобразователей.

На рис. 43 дана простейшая схема такого преобразователя. Он представляет собой стеклянный стакан с двойными стенками и дном. На внутреннюю стенку наружного дна нанесен полупрозрачный серебряноцезиевый слой АА — это фотокатод. Напротив фотокатода на внутреннем донышке нанесен флуоресцирующий (светящийся под ударами электронов) экран ББ.

Рис. 43. Схема простейшего электронно-оптического преобразователя: АА — полупрозрачный серебряноцезиевый слой; ББ — флуоресцирующий экран

Когда на фотокатод АА упадет слева инфракрасное изображение предмета, из каждого его участка будут вырываться электроны. Иначе говоря, каждый участок фотокатода станет источником электронного луча. Интенсивность этого луча будет тем больше, чем интенсивнее («ярче») инфракрасный свет, падающий на этот участок, т. е. чем больше на него падает фотонов инфракрасного света. Вся же совокупность электронных лучей, испускаемых всей плоскостью фотокатода АА, будет в точности повторять световые контрасты инфракрасного изображения. Мы можем сказать, что с помощью фотокатода инфракрасное изображение преобразовалось в электронное изображение.

Чтобы получить из электронного изображения вновь оптическое, но уже видимое изображение, нужно все излученные фотокатодом электроны снабдить добавочной энергией и направить их на флуоресцирующий экран ББ, притом так, чтобы электронное изображение не искажалось при перелете электронов от АА к ББ, т. е. чтобы электроны летели не как попало, а параллельно, перенося изображение на экран ББ. Это достигается тем, что между фотокатодом АА и экраном ББ создается высокое напряжение, ускоряющее электроны в сторону экрана. Это и есть тот добавочный источник энергии, о необходимости которого говорилось выше.

Упав на экран ББ, каждый электронный луч создает на нем светящееся видимым светом пятно. Интенсивность каждого светящегося пятна будет соответствовать интенсивности падающего электронного луча, тем самым к интенсивности инфракрасного света того участка фотокатода, из которого вышел данный электронный луч. На флуоресцирующем экране в целом будет воспроизводиться оптическое изображение, но оно будет уже в видимом свете.

Так с помощью электронно-оптических преобразователей невидимые инфракрасные изображения предметов преобразуются в видимые.