Добавить в цитаты Настройки чтения

Страница 23 из 35

Перескоками электродов можно объяснить и тот факт, что разности между отдельными частотами тоже являются частотами излучения атомов. Когда электрон обращается, скажем, по четвертой орбите, атом имеет один запас энергии. При перескоке электрона на вторую орбиту атом теряет часть энергии на излучение. Обозначим ее так: Э4,2. Но ту же энергию атом может потерять за два приема: при перескоках электрона с четвертой орбиты на третью и с третьей на вторую. Если обозначить энергии, потерянные при отдельных перескоках, через Э4,3 и Э3,2, то сказанное можно записать: Э4,2 = Э4,3 + Э3,2. Отсюда следует, что энергия, потерянная при перескоке 4—2, минус энергия, потерянная при перескоке 4—3, равна энергии, потерянной три перескоке 3—2. Но мы уже знаем, что энергия излучения тем больше, чем больше частоты излучения. Следовательно, если существует закон разности энергий излучений, то существует и закон разности частот излучений. Это мы и видим на примере частот, указанных в предыдущем абзаце. В самом деле: 6,2·1014 — 1,6·1014 = 4,6· 1014.

Следует заметить, что при каждом отдельном перескоке электрона атом испускает излучение только одной частоты. Если же в спектре водорода мы наблюдаем излучения не одной, а нескольких частот, то это потому, что мы всегда наблюдаем результат действия не одного, а множества атомов. В одних атомах электроны перескакивают со второй орбиты на первую, в других — с третьей на вторую, с третьей на первую и т. д.

Такое же объяснение можно дать и частотам спектров других элементов.

Такова была модель атома, нарисованная Бором. Она была только первым шагом в изучении строения атома, так как не объясняла, почему электроны ведут себя в атоме так странно, в противоречии с установленными ранее законами. Она только указывала (да и то лишь в простейших случаях), как они себя ведут, в силу каких-то новых, еще не открытых законов, верных для мира малых величин. Эти законы были открыты не сразу. Они нашли освещение в новой науке — квантовой механике.

Модель Бора отображает го, что происходит в простых атомах, лишь в грубом приближении. А для сложных атомов она вовсе непригодна. Но в случаях, когда большая точность не требуется, физики пользуются этой моделью ввиду ее простоты.

В этой модели сохранятся не геометрические образы (орбиты электронов), а главные физические черты, подтвержденные экспериментом; а именно: возбужденные атомы находятся в различных энергетических состояниях, вполне определенных для атомов данного элемента; это энергетическое состояние атом может изменять только скачком, переходя при этом на более низкий энергетический уровень и испуская квант света (фотон) определенной частоты (и, следовательно, определенной энергии), в зависимости от того, какой из возможных переходов он при данных условиях совершает.

Атомные спектры и электронные слои

Физики собрали в спектроскопических лабораториях все известные элементы. Они бомбардировали атомы различных элементов быстрыми электронами, отщепляли от атомов то один, то два, то несколько электронов, действовали на атомы сильными магнитными и электрическими полями, словом, ставили атомы во всевозможные условия. И все время наблюдали, какие при этом получаются спектры, как эти спектры изменяются под влиянием различных условий. А из этого делали выводы о том, какие же перестройки происходят внутри атомов.

Рассмотрим один из примеров, показывающий, как по атомным спектрам физики определяют строение атомов.

Возьмем элемент литий. Он стоит в таблице Менделеева на третьем месте, у его атомов по три электрона. Если атом не возбужден, электроны обращаются вокруг ядра по устойчивым орбитам. Все эти орбиты можно занумеровать одним номером — № 1; но мы должны помнить, что это номера орбит для разных электронов. Не можем ли мы по спектрам атомов лития узнать что-либо еще о его орбитах?

Будем обстреливать атомы лития из электронной пушки. Мы уже знаем, что при малой энергии электронов-снарядов атомы лития не будут возбуждаться. Первое возбуждение наступит тогда, когда электроны-снаряды достигнут энергии в 1,86 электрон-вольта. При захвате этой энергии наружный электрон лития перейдет на орбиту № 2. Другие электроны останутся на своих прежних орбитах: они ближе к ядру, сильнее с ним связаны. Их такой малой энергией не возбудить. Мы узнаем о возбуждении наружного электрона благодаря тому, что литий будет испускать излучение с частотой 4,6·1014 циклов; эта частота будет свидетельствовать об обратном перескоке наружного электрона с орбиты № 2 на орбиту № 1. При захвате следующих порций энергии наружный электрон будет переходить на новые орбиты, а при обратном перескоке испускать излучение с новыми частотами.





Чем больше порция захваченной атомом энергии, тем дальше будет орбита наружного электрона, тем слабее будет его связь с ядром. При захвате энергии в 5,4 электрон-вольта наружный электрон вылетает из атома совсем— атом становится ионом (однократная ионизация). Если однократно ионизованный ион лития захватит извне медленно движущийся электрон, он испустит излучение с частотой 12,96·1014 циклов.

Заметим, что частоты, с которыми мы имеем дело при возбуждении наружного электрона, лежат в пределах от 4,6·1014 до 12,96·1014 циклов. Последняя частота больше первой всего в 2,9 раза.

При обстреле лития электронами, имеющими энергию не ниже 75 электрон-вольт, появится излучение с частотой 182,0·1014 циклов. Атомы лития, испускающие это излучение, дважды ионизованы. Второй электрон вылетает из атома при захвате энергии в 75 электрон-вольт. А излучение с указанной частотой испускается, когда дважды ионизованный атом лития захватит извне медленно движущийся электрон. Последний, третий, электрон вылетает из атома при захвате энергии в 121 электрон-вольт, что соответствует излучению с частотой 294,7·1014 циклов.

Мы получили ряд энергий ионизации лития: энергия первой ионизации равна 5,4 электрон-вольта, второй — 75 электрон-вольтам, третьей — 121 электрон-вольту. Соответствующие этим энергиям частоты: 12,96·1014, 182,0·1014 и 294,7·1014 циклов. Эти энергии, или частоты, показывают, как крепко связаны электроны лития с ядром, сколь близко они находятся к ядру.

Сразу видно, что энергия связи второго электрона больше энергии связи наружного, наиболее слабо связанного электрона, в 14 раз. А вот энергия связи третьего, внутреннего электрона больше энергии второго всего в полтора с небольшим раза. Связь у двух внутренних электронов с ядром почти одинакова, их орбиты находятся недалеко друг от друга. Эти два электрона составляют тесную группу, или, как говорят физики, составляют один слой электронов. Наружный же электрон у лития обращается вокруг ядра вдалеке от внутреннего слоя электронов (рис. 36).

Так, изучая частоты излучений, ученые делают выводы о внутреннем строении атомов, о том, что электроны в атомах располагаются по слоям. В тяжелых атомах число таких слоев достигает семи. Физики называют их: слой К (ка), слой L (эль), слой М (эм) и т. д. Эти слои, кроме того, разделяются еще на подгруппы.

Частота рентгеновских излучений находится в пределах от 3·1016 до 3·1019 циклов; частота видимого света  — в пределах от 0,8·1014 до 0,4·1014 циклов. Следовательно, частота рентгеновских излучений больше частоты видимого света в десятки тысяч раз. Во столько же раз больше и энергия фотонов рентгеновских излучений.

Рис 36. Модель атома лития. Два ближайших к ядру электрона составляют внутренний слой

Из этого следует, что высокочастотные рентгеновские спектры испускаются три перескоках электронов, которые движутся глубоко внутри атомов и сильнее всего связаны с ядром. Инфракрасные, видимые и ультрафиолетовые спектры (их называют оптическими) образуются в результате перескоков внешних электронов, связанных с ядром слабее.