Добавить в цитаты Настройки чтения

Страница 26 из 30



Книга VII, предложение 30. Если р — первое число и делитель m х n, то p — часть одного из множителей m и n.

Книга VII, предложение 31. Всякое составное число измеряется каким-то простым числом.

Книга VII, предложение 32. Всякое число или простое, или измеряется каким-то простым числом.

Книга IX, предложение 14. Если число будет наименьшим измеряемым данными простыми числами, то оно не измерится никаким иным простым числом, кроме первоначально измерявших его.

Книга IX, предложение 20. Простых чисел существует больше всякого предложенного количества простых чисел.

В доказательстве 31 книги X Евклид пользуется подразумевающимся постулатом. Он рассуждает следующим образом: пусть N— составное число, тогда его делителем (его частью) будет N’< N. Предположим, что это не простое число. Значит, оно, в свою очередь, составное и имеет делитель (часть) N" < Ν' < N и так далее. Невозможно, что не найдется никакого простого числа Р, потому что в противном случае у нас будет бесконечная последовательность... <Νn< ... < Ν"< Ν'< Ν. Согласно Евклиду, это невозможно. Таким образом, он постулирует невозможность убывающей последовательности первых чисел.

Бог создал целые числа, все остальное — дело рук человека.

Леопольд Кронекер (1823-1891)

Пьер де Ферма впоследствии назвал это свойство методом бесконечного спуска и достиг с его помощью важнейших результатов, приведших к возрождению арифметики.

Предложение 14 книги IX иногда называют основной теоремой арифметики (каждое целое число больше 1 или простое, или может быть записано в виде произведения простых чисел), выраженной математическим языком той эпохи. Чтобы утверждать это с полным правом, нам нужно знать, отличаются эти простые числа или могут быть равны. Во втором случае мы получим основную теорему.

БЕСКОНЕЧНОСТЬ ПРОСТЫХ ЧИСЕЛ

В предыдущих главах мы говорили об ограничениях, наложенных Аристотелем на использование понятия бесконечности. В предложении 20 книги IX {«Простых чисел существует больше всякого предложенного количества простых чисел») Евклид соблюдает это ограничение и проявляет большую осторожность, чтобы не сказать о «бесконечном ряде простых чисел». И тем не менее существует ли алгоритм, позволяющий получать все больше и больше простых чисел? Евклид ничего не говорил по этому поводу. Лишь позже, в «Арифметике» Никомаха Герасского (ок. 60 — ок. 120) рассказывается о решете Эратосфена — методе, названном по имени изобретшего его математика:

«Способ получения всех этих чисел Эратосфен назвал решетом, потому что здесь сначала берутся нечетные числа, все вместе и без различий между ними, а затем этим производящим методом отделяются, как посредством решета, первичные числа от составных. Способ решета состоит в следующем. Начинают с тройки, а потом располагают в ряд все числа, кратные трем, пропуская два числа через каждые три и убирая третье. Потом переходят к первому оставшемуся числу, пятерке; пропускают четыре числа и убирают пятое; затем то же проделывают с семеркой, и так дальше, начиная всякий раз с первого неубранного числа».

СОВЕРШЕННЫЕ ЧИСЛА

Хотя Евклид и дал правильное определение простых чисел, а также теорему, чтобы породить совершенные числа, он не снабдил ее никаким примером. Соответствующее предложение может показаться неясным, возможно потому что оно представлено в описательной форме.

Книга IX, предложение 36. Если от единицы откладывается сколько угодно последовательно пропорциональных чисел в двойном отношении до тех пор, пока вся их сумма не станет первым числом, [...] то возникающее число будет совершенным.

Евклид имеет в виду следующее:

Если 1,2, 22, 23, ..., 2n последовательно удваивать, то их сумма будет

Sn=1 + 2 + 22 + 23+...+ 2n = 2n+1 -1; если Sn — простое число, то Рn = 2n x Sn = 2nx(2n+1-1) — совершенное число (четное).

Евклиду удалось получить этот результат, потому что в предложении 35 книги IX он уже дал формулу, необходимую для сложения чисел из последовательности 1, 2, 22, 23, ..., 2n. Он также обратил внимание, что единственные рассмотренные делители Р, 1, 2, 22, 23,..., 2n и Sn, 2 х Sn, 22 х Sn, 23 x Sn,..., 2n-1 x Sn. Он сложил их и получил результат теоремы: сумму делителей 1, 2, 22, 23, ..., 2n,

равную Sn = 2n + 1 - 1, и сумму делителей Sn, 2 x S ,22 x S ,23 x S ,..., 2n-1 x S и (2n - 1) x S . Сумма двух результатов — Рn = Sn + (2n- 1) х Sn = 2n х Sn = 2n х (2n + 1 - 1). Ч. Т. Д.

Первые примеры

В «Арифметике» Никомах Герасский устанавливает, что совершенными числами являются 6,28,496 и 8126. Из этого он делает следующие выводы.

1. Совершенные числа (четные) оканчиваются на 6 и 8 (верно).

2.Они чередуются (неверно).

3.Существует одно совершенное число на каждый десятичный порядок — среди единиц, десятков, сотен, тысяч и так далее (неверно).

В XVIII веке Эйлер доказал теорему, взаимодополняющую теорему Евклида: каждое совершенное число (четное) имеет вид 2n х (2n+1-1), где 2n+1-1 — простое число. На сегодняшний день все еще существуют нерешенные вопросы относительно совершенных чисел: неизвестно, бесконечен ли их ряд и существуют ли совершенные нечетные числа.

Начнем с последовательности нечетных чисел.

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57



59

61

63

65

67

69

71

73

75

77

79

81

83

85

87

89

91

93

95

97

99

101

103

Начиная с 3 уберем третьи числа через каждые два.

3

5

7

11

13

17

19

23

25

29

31

35

37

41

43

47

49

53

55

59

61

65

67

71

73

77

79

83

85

89

91