Добавить в цитаты Настройки чтения

Страница 40 из 43



По своей сложности, по малому количеству «улик» и обилию правдоподобных гипотез, Тунгусское событие в корне отличается от классических падений метеорных тел. Как правило, осколки или следы «пришельцев из космоса» — метеоритов — рассказывают о том, что они собой представляли, как двигались в атмосфере. Так, шестидесятитонный осколок железного метеорита, найденный в Африке, тридцатитонный осколок, найденный в Гренландии, сто тонн осколков Сихотэ-Алиньского метеорита, найденные у нас на Дальнем Востоке, обнаруженные на американском континенте два огромных кратера, образованных упавшими метеоритами (один диаметром 3,6 км, другой диаметром 1,2 км и глубиной около 200 м), дают представление о том, какие огромные тела прибыли к нам в свое время из далекого космоса. К сожалению, нет аналогичных вещественных доказательств, которые позволили бы представить себе то, что называют Тунгусским событием.

Тунгусское событие — старое, забытое, казалось бы, дело… Однако же исследователи регулярно возвращаются к этой грозной загадке, надеясь, по-видимому, найти ответы и на какие-то общие, может быть, даже практически важные вопросы.

И еще, наверное, из-за инстинктивной человеческой неприязни к неизвестному.

За горизонт Вселенной

Разрабатывается проект гигантского радиотелескопа, который будет построен в космическом пространстве и резко расширит возможности наблюдения звездного неба.

Ну чем еще нас можно удивить, людей XX в., свидетелей феерических побед науки, техники, индустрии…Мы все уже привыкли к этому непрерывному потоку сенсаций и даже, кажется, немного устали от него. Нас уже, видимо, ничто не может серьезно взволновать, никакие проекты и свершения. Никакие.

Никакие?

Вы листаете тонкую тетрадь — ксерокопию машинописного текста с несложными рисунками, официально именуемую «Препринт Пр 373 Института космических исследований АН СССР», вы листаете эту тетрадь, и у вас просто дух захватывает от очередной человеческой дерзости. От фантастичности замысла. И еще больше от того, что замысел этот уже спокойно рассматривают как будущую реальность. Превращают в технический проект. Готовят чертежи и строят модели. Планируют, когда что можно сделать. Подсчитывают, что сколько стоит, сколько нужно затратить средств. И что это в итоге даст. Ну а это самое «что даст» совсем уже поражает воображение — неужели такое возможно?

Но вот здесь — стоп! Здесь настал момент сменить манеру изложения: никаких эмоций, дабы не потерялось в них непростое для понимания существо дела. Сейчас мы попробуем рассказать обо всем последовательно и сухо, равняясь на бесстрастный стиль научных сообщений.

Радиоисточники во Вселенной. Чтобы раз и навсегда исключить неаккуратное толкование таких слов, как «радиоисточник», «радиотелескоп», «радиоастрономия», проделайте сами с собой несложный педагогический эксперимент. Как-нибудь, слушая музыку, на мгновение отвлекитесь и отметьте про себя такой прозаический факт: вы слышите рукотворный звук, воспринимаете звуковые волны, искусственно созданные человеком. И тут же вспомните, что природа и сама умеет генерировать звук, что у нее своя музыка — раскаты грома, шум лесов, ровные ритмы морского прибоя, завывание вьюги. А теперь от звуковых волн переходите к радиоволнам. Последние известия в ваш дом приносит радиоволна, искусственно созданная на радиостанции (рис. 1).



И в то же время радиоволны рождаются естественным образом, в огромном многообразии природных явлений, таких, скажем, как разряд молнии, или изменение энергии молекул, или торможение электронов в магнитных полях. Подобные процессы происходят во всех небесных телах, и поэтому радиоизлучения приходят к нам от планет, от Луны и Солнца, от звезд, галактик, туманностей. Именно они и называются космическими радиоисточниками.

Радиоастрономия. Изучением космических радиоисточников занимается радиоастрономия. Она зародилась в 1931 г., когда случайно было обнаружено радиоизлучение Млечного Пути. Через 15 лет в созвездии Лебедя нашли первый точечный радиоисточник, невидимую радиозвездочку, и лишь через восемь лет ее удалось увидеть в мощном телескопе. Это, кстати, типичная ситуация — сначала далекий космический объект обнаруживают по радиоизлучению, а затем его уже удается увидеть. А бывает, что и не удается.

Радиотелескопы (РТ). Основной инструмент радиоастрономов — радиотелескоп, он состоит из чувствительного приемника и остронаправленной антенны. Антенна называется «остронаправленной» потому, что улавливает радиоволны только с одного направления, а остальные просто не замечает. Именно поэтому, поворачивая антенну радиотелескопа и как бы ощупывая ею небосвод, удается установить, где именно находится радиоисточник, а иногда и оценить его размеры, различить детали.

Одна из главных характеристик радиотелескопа — его разрешающая способность, т. е., грубо говоря, умение различить близко расположенные источники, не принять их за один источник (рис. 2). Разрешающую способность оценивают в угловых единицах, в градусах, минутах или секундах. Если, например, разрешающая способность телескопа 5' (5 угловых минут), то он видит звездное небо как бы через узкую конусообразную трубку, постепенно расширяющуюся под углом 5' и прикрытую плотным матовым стеклом, — никаких деталей в поле зрения трубки уже различить нельзя. И ясно, что чем тоньше трубка, чем острее угол, под которым она расходится, тем более мелкие детали можно через нее увидеть. Так, скажем, при разрешении 1' с расстояния 1 км можно увидеть световое пятно размером с футбольный мяч, а при разрешении 1" (угловая секунда) обнаружить в нем более яркие или менее яркие участки размером с горошину.

Радиотелескопы, которые мы чаще всего видим на фотографиях, устроены так: большая металлическая чаша-рефлектор собирает радиоволны и концентрирует их в фокусе обычно на высоте в несколько метров (40 % от диаметра) над центром зеркала. Здесь расположен сам воспринимающий элемент, так называемый облучатель, связанный непосредственно со входом приемника (рис. 3).

Разрешающая способность такого радиотелескопа зависит от размеров рефлектора: чем он больше, тем лучше разрешение, тем меньше, острее угол зрения и, значит, более мелкие детали можно рассмотреть (рис. 4). Кроме того, чем больше рефлектор, тем больше энергии он собирает, тем лучше вторая важнейшая характеристика радиотелескопа — его чувствительность, способность улавливать слабые сигналы.

Отсюда вывод: нужно строить радиотелескопы с большими антеннами. Чем больше, тем лучше.

Размеры антенны РТ. Каждая наша земная радиостанция излучает радиосигналы одной частоты, т. е. с одной строго определенной длиной волны. А космический радиоисточник излучает, как правило, очень широкий спектр частот, излучает одновременно на всех волнах всех диапазонов. Образно говоря, берет аккорд, ударяя сразу по всем рояльным клавишам. Радиотелескоп не может услышать весь этот аккорд, он выделяет из него лишь отдельные ноты: есть радиотелескопы средневолновые, они улавливают космические радиоизлучения с длиной волны в сотни метров, есть инструменты метрового диапазона и дециметрового. Ну а телескоп с чашей-рефлектором, как правило, рассчитан на прием сантиметровых или миллиметровых волн.