Добавить в цитаты Настройки чтения

Страница 14 из 43



Мяч снова в игре, он влетает на площадку в направлении проигравшего… На этот раз противник успевает, отбивает мяч, и тот опять летит на нас, летит вправо-вверх. Ситуация знакомая — быстро поднимаем ракетку (рис. 2, д)… Но что это? Мы, оказывается, просчитались — не учли, что мяч шел под очень большим углом и из-за этого ударился о верхнюю границу площадки…

По правилам данной игры мяч отражается, отлетает от горизонтальных границ поля (обычно вертикальных границ вообще нет, и мяч может легко уйти, но только влево или вправо, а вверх или вниз не может), резко поворачивает вниз, и мы уже не успеваем подставить ракетку (рис. 2, е)… Ничего не поделаешь — 1:1.

Современного человека окружает огромное множество самых разнообразных машин, приборов, аппаратов, и, конечно же, невозможно знать, как все они устроены, как работают. Невозможно и не обязательно. Есть немало фотографов-любителей, которые делают прекрасные слайды, хотя и не знают, как образуется цветное изображение на обратимой пленке. И немало шоферов-любителей, которые прекрасно водят машину и при этом знать не хотят, что происходит, когда нога нажимает педаль сцепления. Ну а без знания заэкранных секретов телевизионной игры наверняка можно прожить: чтобы точно двигать ракетку, совсем не обязательно понимать, как именно эта ракетка нарисована на экране и как перемещается, как двигается мяч, ведется счет, зажигаются цифры.

И все же в расчете на пытливого читателя, на возможные вспышки любопытства мы уделим этим процессам немного внимания. Совсем немного. А попутно заметим: в телевизионных играх электроника использует свои классические методы и сломы, знакомство с ними может пригодиться при встрече с техникой, далекой от развлечений.

Начнем с описания двух простейших опытов. Один из них вы, наверное, уже наблюдали или даже непреднамеренно проделывали сами: если вблизи телевизора включить электробритву с моторчиком, например «Харьков», то на экране замелькает множество черных и белых пятен и пятнышек. Второй опыт следует проделать специально — он очень прост и совершенно безопасен. Вставьте в антенное гнездо телевизора кусок провода (рис. 1) и набросьте его на включенный транзисторный приемник — на экране появятся замысловатые узоры, прямые и волнистые линии, темные и светлые пятна. Если поворачивать переключатели диапазонов или вращать ручку настройки приемника, то узоры эти придут в движение, а при некоторых положениях ручки настройки они остановятся и будут оставаться в сравнительно устойчивом состоянии.

Теперь вывод: посторонний электрический сигнал, попав в телевизор, может создавать на экране какие-то элементы картинки. Почему мелькает экран, когда рядом работает бритва? Потому, что искрит коллектор ее моторчика, в процессе искрения в цепи резко меняется ток, резкие электрические всплески тока каким-то образом проникают в телевизор (либо через сеть, либо прямо через антенну) и именно они, эти незваные электрические сигналы, поочередно создают на экране бессчетные блики. Примерно то же самое происходит и в опыте с приемником. Практически все современные приемники — это супергетеродины, у них внутри имеется собственный вспомогательный генератор — маломощный гетеродин. Если приблизить приемник к антенне телевизора, то в нее попадет сигнал гетеродина — слабый меняющийся ток. Подобно трамвайному «зайцу», он доберется до конечной станции — до управляющего электрода кинескопа, а всякий сигнал на управляющем электроде — это светлое или темное пятнышко на экране; именно на этом основано создание картинки при нормальной телепередаче.



Рисование на телевизионном экране с помощью синтетических сигналов известно давно. Вспоминается, как лет 10 назад в журнале «Радио» была описана приставка, которая, используя оригинальный способ электрического рисования на экране, превращала телевизор в осциллограф. В этой приставке, кстати, уже в готовом виде были схемные решения, которые сейчас встречаются во всех телевизионных играх. Другой пример. Телецентры в паузах передают в эфир неподвижные картинки, например задернутый занавес. Иногда такой занавес передается традиционным способом (телекамера смотрит на настоящий занавес и посылает его изображение нам), а иногда — от специального «генератора занавеса». Он вырабатывает определенные серии электрических сигналов, которые через телепередатчик приходят в телевизор и рисуют на его экране. Никакого настоящего занавеса и в помине нет, мы видим «полотнище», созданное виртуозом-генератором. И наконец, еще один представитель электронной живописи — дисплей, устройство, где на телевизионном экране с помощью серии электрических импульсов рисует и пишет компьютер, сообщая результаты своих размышлений.

От проделанных простейших опытов до принципов рисования в телевизионной игре остается буквально несколько шагов. Прежде всего попробуем понять, чем определяется место появления светлых или темных точек на экране. Электронный луч кинескопа быстро прочерчивает экран горизонтальными строками и, медленно смещаясь вниз, заполняет в итоге весь кадр. Движением луча управляют два пилообразных напряжения — строчное и кадровое (рис. 3). Они меняются равномерно, линейно и постепенно подтягивают рисующий луч к своим отклоняющим пластинам (катушкам). Потом пила обрывается и луч возвращается в исходное состояние.

А еще есть в кинескопе управляющий электрод, он управляет интенсивностью электронного луча, т. е. яркостью экрана. Если на управляющий электрод на мгновение подать «минус», т. е. подать импульс отрицательного напряжения, то оно как бы оттолкнет электроны, ослабит луч и на экране появится темная точка. Кратковременный «плюс», наоборот, ускорит электроны, электронный луч станет интенсивнее, и появится светлая точка. В каком месте экрана вспыхнет точка? Это зависит от того, в какой момент появится импульс. Если выпустить его на арену в начале кадровой пилы, то мы увидим точку вверху, а если в конце пилы — внизу; если импульс появится в начале строчной пилы, точка будет слева, если в конце строчной пилы — справа.

Следующий шаг — посмотрим, как можно поставить точку в нужном нам месте. Предположим, что у нас есть генератор импульсов, которым на равных управляют сразу два руководителя, противодействующих друг другу (в электронных схемах это осуществляется очень просто и протекает без эксцессов). Один из них — пилообразное напряжение строчной развертки U0 (рис. 4), другой — постоянное напряжение , которое можно менять поворотом ручки переменного резистора (реостата). Схема построена так, что импульс появляется в момент, когда оба «руководителя» дают одинаковые указания — когда меняющееся напряжение строчной пилы U0 становится равным установленному нами поворотом ручки постоянному напряжению . При этом, конечно, чем более высокий порог постоянного напряжения мы установим, тем позже пила U0 достигнет этого порога, тем позже появится импульс и тем правее окажется на экране точка. Работу этой схемы можно проиллюстрировать такой аналогией. На одной чаше весов стоит гирька, на второй — стакан, который медленно наполняется водой. Наступит момент, когда вес воды превысит вес гирьки и весы «сработают». И конечно, чем больше вес гирьки, тем позже произойдет такое срабатывание.

Пилообразное напряжение, которое помогает в нужный момент выдать импульс (подобно тому как будильник «выдает» звонок), может быть взято прямо от генераторов развертки или же должно быть жестко с ними синхронизировано — только в этих случаях точка на экране не будет дергаться. Чтобы можно было разместить точку в любом месте экрана, обычно создают два импульса — один от строчной пилы, другой от кадровой. Импульсы эти пропускают через схему совпадений, и точка появляется как бы на пересечении двух линий — вертикальной и горизонтальной. Ракетки в нашем теннисе двигаются только вверх-вниз, и поэтому к строчной пиле они намертво привязаны в одном месте. Чтобы управлять ракетками, достаточно менять время их появления, отсчитанное по кадровой пиле, т. е. одним переменным резистором менять только одно постоянное напряжение.