Добавить в цитаты Настройки чтения

Страница 42 из 58

6. 4. Специфичен ли химизм примитивных нейронов?

Из представления о плюрихимической примитивной нервной клетке с неизбежностью вытекает, что в простой нервной системе химическая специфичность нейронов должна быть выражена не так четко, как в сложной, эволюционно продвинутой Факты говорят о противоположном. В разделе 6.1. приводились данные, говорящие о совершенной специфичности холинергических, серотонинергических, дофаминергических нейронов гастропод. Результаты микрохимических исследований на их гигантских нейронах получают полное подтверждение в этом отношении в электрофизиологических наблюдениях, которые однозначно показывают, что в том или ином синапсе действует индивидуальный передатчик, а не смесь таковых. Никаких данных, указывающих на меньшую, по сравнению с млекопитающими, степень медиаторной специфичности нейронов, нет и для других животных, обладающих простой нервной системой [см., например, обзоры 166, 279].

Даже у наиболее примитивных из организмов, имеющих центральную нервную систему, — у плоских червей (планарии и трематоды) разные группы нейронов закономерно различаются по своей специфичности. Об этом свидетельствуют данные люминесцентной гистохимии биогенных аминов: позиции и связи нейронов, содержащих серотонин, отличаются от позиций и связей нейронов, содержащих первичный катехоламин [89, 335]. У плоских червей описаны также системы пептидергических нейронов.

Более того, специфичность нейронов четко выражена у кишечнополостных — организмов, не обладающих ещё нервными центрами. Нервную сеть кишечнополостных обычно рассматривают как наиболее примитивную из нервных систем, развившихся в ходе эволюции многоклеточных животных. До недавнего времени оставались неясными даже принципы строения сети, вернее двух сетей, независимо развивающихся в эктодермальном и энтодермальном слоях кишечнополостных. Ныне полностью опровергнута идея о синцитиальной организации сети: даже у наиболее примитивных представителей типа, как и у относительно сложных, электронно-микроскопически доказано наличие истинных химических синапсов между нейронами. При этом обнаружился замечательный факт: сеть всегда построена из нейронов разных типов, с разными ультраструктурными характеристиками секреторных везикул [341 — 343].

Выводы электронной микроскопии подтверждаются гистохимическими данными. Присутствие первичного катехоламина обнаружено у актиний в закономерно расположенной категории эктодермальных нейронов — в веретеновидных клетках, тела которых находятся в эпителии щупалец, а отростки, имеющие характерные для катехоламиновых нейронов варикозные пресинаптические утолщения, образуют субэпителиальное сплетение нервных волокон в самих щупальцах и вокруг рта. Авторы, описавшие эти клетки у некоторых актиний [140, 47], сочли их сензорными нейронами, принимая во внимание типичную для чувствительных клеток позицию в наружном эпителии. Я переисследовал этот вопрос на актинии Bunodactis stella и нашел явные синаптические контакты между указанными отростками и мышечными клетками эктодермального слоя мускулатуры щупалец [рис. 1 и 2 в работе 281]. По-видимому, эти клетки выполняют и сензорную и моторную функции. Это — примитивное свойство, свидетельствующее о низком уровне функциональной дифференциации клеток в нервной системе актинии. Но никаких признаков низкого уровня химической дифференцированности нейронной популяции не видно: специфичность катехоламиновых нейронов выражена у актиний так же отчетливо, как у млекопитающих.

Кстати, примитивные мультифункциональные сензо-моторные нейроны, существование которых ещё недавно отрицалось [188], почти одновременно были найдены у трех разных организмов — и именно там, где такие нейроны следовало ожидать, т. е. в нервных образованиях с низким уровнем функциональной дифференциации. Кроме упомянутых только что нейронов актинии, такие клетки описаны у гидры, где они сочетают функции сензорных, моторных и вставочных нейронов [342а], а также в гениталиях аплизии [124]. Последний случай не должен удивлять. В целом гастроподы, конечно, намного сложнее кишечнополостных по уровню нервной организации, но если взять, периферические нервные сплетения гастропод, то они вряд ли намного сложнее, чем нервная сеть актинии или гидры. Это общее правило: даже у человека, имеющего высокоразвитый мозг, уровень функциональной организации некоторых отделов нервной системы весьма примитивен, и, скажем, интрамуральные ганглии кишечника недалеко ушли в этом отношении от ганглиев беспозвоночных.

Возвращаясь ещё раз к мнению Т. Лентца о том, что комбинации нескольких медиаторов в одном нейроне есть отголосок прошлого [231], нужно сказать следующее. Лентц в этом мнении лишь предложил свое объяснение явлению, которое 10 лет назад считалось установленным фактом. В то время большинство нейробиологов принимало, что ацетилхолин имеется в симпатических норадренергических нейронах и гипоталамических пептидергических клетках и что он каким-то образом участвует в этих клетках в синаптической передаче. В частности, электронными микроскопистами в те годы описывались в окончаниях этих нейронов, помимо специфических гранул с электронно-плотным содержимым, скопления мелких прозрачных пузырьков, которые повсеместно считались вместилищем ацетилхолина и назывались «синаптическими везикулами» — в противовес более крупным «секреторным гранулам». В поддержку этих представлений привлекались данные о локализации холинэстеразы. Напомню, что чрезвычайно популярным было объяснение этих явлений, исходящее из предположения, что из любого окончания сначала секретируется ацетилхолин, который затем помогает выделиться «главному» медиатору — например, норадреналину [103].



Сейчас эти взгляды представляют только исторический интерес, так как вся их фактическая база сведена к нулю. Специальная проверка, проведённая с помощью разных методов, показала отсутствие измеримых количеств ацетилхолина в адренергических нервных окончаниях млекопитающих [128, 148]. Мелкие пустые гранулы окончаний этих клеток перестали быть пустыми, как только микроскописты научились с помощью тех или иных предосторожностей сберегать находящийся в них катехоламин. Также и в пептидергических окончаниях скопления пустых пузырьков получили естественное объяснение, когда выяснилось, что их число увеличивается по мере того, как «секреторные гранулы» теряют своё содержимое.

Таким образом, у высших животных практически неизвестны нейроны с комбинациями медиаторов и нейрогормонов. Сравнительные данные показывают, что и у низших животных химическая специфичность нейронов выражена в полной мере.

6. 5. Един ли гистогенетический источник нервных клеток?

Существует несколько мнений о том, от каких клеток могли произойти примитивные нейроны, потомками которых являются клетки современных нервных систем. Чаще всего в качестве непосредственного источника нейронов называют эпителиальные клетки — мнение, восходящее к прошлому веку [3, 187, 188]. Имеются и другие точки зрения: известный биофизик Г. Грундфест считает предками нейронов железистые клетки, а Л. Пассано — мышечные [см. 231]. На мой взгляд, спора здесь нет, так как это взаимно дополняющие, а не исключающие мнения.

В самом деле, легко найти аргументы в пользу каждого из трёх названных источников. Присутствие нейронов в составе разных эпителиев дает поддержку классическому взгляду. Вторая точка зрения может опереться не только на данные о цитофизиологических механизмах секреции, общих для железистых и нервных клеток, но и на возможное существование переходных форм клеток, примером которых могут служить так называемые «мелкие» клетки симпатических ганглиев млекопитающих, сочетающие, как считают, свойства железистых клеток хромаффинной ткани и нейронов. Труднее, казалось бы, иллюстрировать третью точку зрения, но и это возможно. Известно, что эволюция сердечной мышцы у позвоночных выражается всё увеличивающимся разделением функций между сократительными элементами и «специфической мускулатурой», принимающей на себя функцию генерации и проведения электрических импульсов. В ходе эволюции наблюдается прогрессивная утрата миофибрилл элементами специфической мышечной ткани. Если вообразить этот процесс продолжающимся, то легко представить, что миофибриллы будут утрачены полностью, и тогда по любому из цитологических или физиологических критериев получившиеся клетки нужно будет назвать нейронами. Одни из них будут выполнять пейсмекерную функцию, другие проводить возбуждение к сократимым элементам миокарда, получится сердце с нейрогенной автоматией. Вполне возможно, что эти этапы эволюции, воображаемые для сердца позвоночных, являются свершившимся фактом в историческом развитии сердца у членистоногих.