Страница 21 из 27
Обзоры красных смещений галактик
Когда мы строим трехмерную карту расположения галактик во Вселенной, мы сначала анализируем двумерные фотографии неба, чтобы найти галактики, а затем проводим дополнительные измерения, чтобы определить, насколько далеко галактики находятся. Самый масштабный пока проект трехмерного картографирования называется Слоуновским цифровым обзором неба (SDSS). (Мне повезло в нем поучаствовать, когда я был постдоком в Принстоне.) Более десяти лет небольшой армии специалистов понадобилось, чтобы отснять треть неба с помощью специально построенного в Нью-Мексико 2,5-метрового телескопа и получить двумерную карту неба (рис. 4.4). Принстонский профессор Джим Ганн, напоминавший мне добродушного волшебника, использовал свою магическую силу, чтобы построить для этого телескопа поразительную цифровую камеру, самую большую из когда-либо применявшихся для решения астрономических задач.
Рис. 4.4. Количество информации в Слоуновском цифровом обзоре неба поразительно. Левый рисунок, представляющий все небо, содержит почти терапиксел – миллион мегапикселов. Последовательно увеличивая фрагменты, мы добираемся до галактики Водоворот, находящейся в созвездии Большой Медведицы, но такой же уровень детализации доступен в любой точке изображения. (Иллюстрация: Майк Блэнтон и Дэвид Хогг/Коллаборация SDSS.)
Если вы приглядитесь к изображениям неба в этом обзоре (рис. 4.5), вы обнаружите множество звезд, галактик и других объектов – их там более полумиллиарда. Это означает, что если вы попросите аспиранта отыскать все объекты, то, затрачивая на каждый по одной секунде и работая 8 часов в день без перерывов и выходных, он справится с этой работой за 50 лет, а вы получите награду как худший в истории научный руководитель. Поиск этих объектов оказался на удивление сложным даже для компьютера: необходимо уметь различать галактики, звезды (которые казались бы точечными, если бы не атмосферное размытие), кометы, спутники и т. д. Хуже того, объекты накладываются друг на друга – например, близкая звезда досадным образом оказывается на фоне далекой галактики. Несколько лет спустя эту проблему удалось решить благодаря героическим программистским усилиям Роберта Лаптона, веселого англичанина, который подписывал электронные письма «Роберт Лаптон Добрый» и всегда ходил босиком (рис. 4.5).
Следующий шаг – понять, на каком расстоянии находится каждая галактика. Закон Хаббла v = Hd означает, что Вселенная расширяется, и чем больше расстояние d до далекой галактики, тем выше скорость v, с которой она удаляется от нас. Закон Хаббла надежно подтвержден, и его можно применить как метод измерения расстояний: определив по красному смещению спектральных линий скорость удаления галактики, можно узнать расстояние до нее. Измерять красные смещения и скорости легко, а расстояния трудно, так что закон Хаббла позволяет сэкономить массу усилий: как только постоянная Хаббла H определена по близким галактикам, достаточно измерить скорости v далеких галактик по красным смещениям их спектров и поделить их на H.
Рис. 4.5. Роберт Лаптон вместе с моими сыновьями рассматривает небольшую часть карты Слоуновского цифрового обзора неба, украшающую стену на астрономическом факультете Принстонского университета. После того как разработанное Робертом программное обеспечение выявило все объекты на карте, были измерены расстояния до большинства интересных галактик и получилась трехмерная карта (слева), где мы в центре, а каждая точка представляет галактику. Слоуновскую Великую стену можно найти, отступив примерно на треть от верхнего края изображения.
Из каталога объектов, составленного с помощью программы Лаптона, было отобрано около миллиона самых интересных для измерения спектров. Чтобы собрать свет 24 спектров галактик, благодаря которым Эдвин Хаббл открыл космологическое расширение, требовались недели. А в Слоуновском цифровом обзоре неба конвейер по производству спектров выдает их по 640 в час, причем все измеряются одновременно. Хитрость в том, чтобы расставить 640 оптических волокон в тех местах фокальной плоскости телескопа, где, по данным каталога Лаптона, должны быть изображения галактик; а затем все волокна направляют галактический свет в спектрограф, который раскладывает их в радужные полоски, фиксируемые цифровой камерой. Другой программный пакет, разработанный Дэвидом Шлегелем и его коллегами, анализирует эти спектры и определяет по красным смещениям спектральных линий расстояние и другие характеристики для каждой галактики.
В левой части рис. 4.5 я изобразил трехмерный срез Вселенной, на котором каждая точка представляет галактику. Когда мне хочется отвлечься, я люблю полетать с помощью трехмерного симулятора космологических полетов. При этом открывается нечто изумительно красивое: мы являемся частью грандиозной структуры. Не только наша планета – часть Солнечной системы, а Солнечная система – часть Галактики, но и сама наша Галактика – часть паутины групп, скоплений, сверхскоплений и гигантской волокнистой структуры, сплетенной из галактик. Разглядывая эту карту, я заметил нечто, сегодня известное как Слоуновская Великая стена (рис. 4.5, слева), и был так поражен размерами этого объекта, что сначала заподозрил ошибку в своей программе. Но некоторые мои коллеги независимо обнаружили, что этот объект действительно существует: он имеет протяженность 1,4 млрд световых лет и является крупнейшей известной структурой во Вселенной. Этот крупномасштабный паттерн кластеризации – космологический клад, в котором закодирована важнейшая информация, отсутствующая в микроволновом космическом фоне.
Космология: от традиционной к прецизионной
Паттерны в распределении галактик в действительности те же, проявления которых мы увидели на карте космического микроволнового фона, но только они показаны миллиарды лет спустя и усилены гравитацией. В области пространства, в которой газ когда-то был на 0,001 % плотнее, чем в окрестностях, и вызывал появление пятна на карте WMAP (рис. 3.4), сегодня может располагаться скопление из сотни галактик. В этом смысле флуктуации микроволнового фона можно рассматривать как космическую ДНК, чертеж, согласно которому развивается Вселенная. Сравнивая едва заметную в прошлом кластеризацию, просматриваемую на космическом микроволновом фоне, и ярко выраженный современный паттерн кластеризации на трехмерной карте галактик, можно уточнить природу материи, притяжение которой до настоящего времени заставляло кластеризацию усиливаться.
Кластеризация микроволнового фона характеризуется кривой спектра мощности (рис. 4.2), и то же верно для кластеризации галактик. Однако найти точный вид этой кривой оказалось очень трудно: измерение показанного на рис. 4.6 галактического спектра мощности на основе данных Слоуновского цифрового обзора неба, несмотря на огромную помощь коллег, заняло у меня шесть – шесть! – лет и стало самым утомительным проектом в моей жизни. Раз за разом я думал: «Как здорово, что я наконец с этим почти покончил, я просто не вынесу, если это продолжится!» – и тут же обнаруживал новые проблемы в своих выкладках.
Рис. 4.6. Скучивание материи во Вселенной описывается кривой спектра мощности. Тот факт, что отметке 1000 млн световых лет соответствует значение 10 % на кривой, означает, грубо говоря, что если измерить количество массы в сфере такого радиуса, то результат будет варьировать в пределах 10 % в зависимости от того, где в пространстве поместить эту сферу. Сегодня существуют высокоточные измерения, и они согласуются с теоретическими предсказаниями. Мне кажется особенно важным, что пять различных способов измерения этой кривой согласуются друг с другом, хотя и сами данные, и люди, которые их получали, и применяемые методы различны.