Добавить в цитаты Настройки чтения

Страница 13 из 27

Рис. 3.3. Свету от далеких источников требуется время, чтобы достичь Земли, поэтому, заглядывая вдаль, мы смотрим и вглубь времен. За самыми далекими галактиками мы видим непрозрачную стену светящейся водородной плазмы, излучению которой потребовалось около 14 млрд лет, чтобы дойти до нас. В то время водород, который заполняет пространство сегодня, был разогрет настолько, что представлял собой плазму. Нашей Вселенной тогда было всего около 400 тыс. лет. (На основе рисунка группы NASA/WMAP.)

Иными словами, Гамов предсказал, что наша Вселенная началась с горячего Большого взрыва и что плазма некогда заполняла весь космос. Причем особенно интересно, что предсказание проверяемо: если холодный газообразный водород прозрачен и невидим, то горячая водородная плазма непрозрачна и ярко светится, подобно поверхности Солнца. Это означает, что когда мы заглядываем дальше в космос (рис. 3.3), мы видим сначала старые галактики, за ними молодые галактики, затем прозрачный газообразный водород, а затем стену сияющей водородной плазмы. Мы не сможем увидеть, что за этой стеной, поскольку она непрозрачна, а значит, скрывает все, что было до нее. Более того, как показано на рис. 3.4, мы должны видеть это во всех направлениях, поскольку, куда бы мы ни взглянули, мы смотрим назад во времени. Получается, мы должны увидеть окружающую нас гигантскую плазменную сферу.

В книге 1946 года Гамов, излагая теорию Большого взрыва, предсказал, что у нас должна иметься возможность наблюдать эту плазменную сферу. Он поручил своим ученикам Ральфу Альферу и Роберту Херману проработать этот вопрос, и несколько лет спустя они опубликовали статью, в которой предсказали, что эта сфера будет светиться с температурой около 5° выше абсолютного нуля, а значит, в основном будет испускать микроволны, а не видимый свет. К сожалению, Альферу и Херману не удалось убедить астрономов поискать фоновое космическое микроволновое излучение, и их работа была почти забыта, как и фридмановское открытие расширения Вселенной.

Рис. 3.4. Все выглядит так, как если бы мы находились в центре гигантской плазменной сферы. Мы видим плазменную стену с предыдущего рисунка во всех направлениях.

Как увидеть послесвечение

К 1964 году группа принстонских ученых поняла, что доступный для наблюдения микроволновый сигнал должен существовать, и планировала начать его поиски, но ее неожиданно опередили. В том году Арно Пензиас и Роберт Вильсон испытывали в «Белл лабораториз» в штате Нью-Джерси самый совершенный в то время микроволновый телескоп. Они обнаружили нечто загадочное: телескоп регистрировал сигнал, который они не могли объяснить, причем сигнал не менялся, куда бы ни направляли аппарат. Странно! Ученые предполагали регистрировать сигналы только при наведении на конкретные объекты на небе, например на Солнце или на спутник с микроволновым передатчиком. Но вместо этого складывалось впечатление, что все небо светится с температурой 3° по абсолютной шкале – очень близкой к 5°, предсказанным Гамовым и его коллегами. Радиоастрономы стали проверять локальные источники шума – на время подозрения пали на голубей, которые гнездились в телескопе и оставляли там помет. Как-то раз я обедал с Арно. Он рассказал, что голубей посадили в деревянный ящик с пищей и послали в отдаленный кампус «Белл лабораториз», чтобы птиц выпустили там. К сожалению, голуби вернулись. В книге Арно уклончиво сказано, что физики все-таки «избавились» от голубей. Я, напоив его вином, выяснил правду: это было сделано с применением огнестрельного оружия… Голубей устранили, но загадочный сигнал остался: Пензиас и Вильсон открыли космический микроволновый фон, слабое послесвечение нашего Большого взрыва[9].

Это открытие стало сенсацией и было отмечено Нобелевской премией по физике 1978 года. Из вычислений Гамова и его учеников следовало, что плазменная сфера на рис. 3.4 должна быть примерно вдвое холоднее солнечной поверхности, а ее горячее излучение шло через космос 14 млрд лет, прежде чем достигло нас, и по пути оно остыло в тысячу раз – до наблюдаемых 3° выше абсолютного нуля, – потому что пространство тысячекратно расширилось. Иными словами, вся Вселенная была когда-то горячей, как звезда, а дикая тысячекратная экстраполяция, примененная Гамовым в его теории Большого взрыва, была проверена и подтверждена.

«Детские фото» Вселенной





Когда плазменная сфера была обнаружена, началась гонка: кто первый сделает ее фотографии? Поскольку температура излучения была почти одинаковой во всех направлениях, изображения Пензиаса и Уилсона выглядели как на белых шуточных открытках с подписью «Сан-Франциско в тумане». Чтобы получить интересные фотографии, которые можно было бы считать первыми «детскими снимками» Вселенной, нужно было увеличить контрастность, регистрируя малейшие изменения от места к месту. Такие вариации должны существовать: если бы в прошлом условия везде были идентичными, то по законам физики они бы оставались идентичными и сейчас, а это прямо противоречит картине, которую мы наблюдаем (галактики в одних местах и пустота в других).

Однако сделать «детские фотографии» оказалось настолько трудно, что для этого понадобилось почти 30 лет. Для подавления измерительных шумов Пензиас и Уилсон воспользовались жидким гелием, охлаждавшим детектор до температуры, близкой к температуре космического микроволнового фона. Но флуктуации температуры от места к месту на небе, как оказалось, должны составлять тысячные доли процента, так что для получения «детских фотографий» требовалась в 100 тыс. раз более высокая чувствительность, чем была доступна Пензиасу и Уилсону. Экспериментаторы по всему миру принимали этот вызов – и терпели поражение. Одни говорили, что это безнадежно, другие отказывались сдаваться. Первого мая 1992 года, когда я был аспирантом, по молодому еще интернету разнесся слух: Джордж Смут собирается объявить о результатах самого амбициозного эксперимента того времени по изучению микроволнового фона, который выполнялся спутником НАСА под названием COBE (Cosmic Background Explorer). Моего научного руководителя Джо Силка пригласили представить доклад Джорджа, и прежде чем он улетел в Вашингтон, я спросил, что он думает об этом открытии. Джон предположил, что они не увидели космические флуктуации, а просто зарегистрировали радиошум нашей Галактики.

Но, вопреки ожиданиям, Смут взорвал бомбу, которая изменила не только мою карьеру, но и космологию как науку. Он со своей командой действительно обнаружил флуктуации! Стивен Хокинг назвал это «самым важным открытием в космологии за целое столетие, если не вообще», поскольку «детские фотографии» 400-тысячелетней Вселенной несут важнейшую информацию о нашем космическом происхождении.

«Золотая лихорадка»

Теперь, когда COBE нашел золото, началась лихорадка. Как видно на рис. 3.5, карта неба, составленная COBE, размытая. Низкое разрешение изображений не позволило показать детали размером менее 7°. Естественно, следующим шагом стало детальное наблюдение небольшого участка неба с высоким разрешением и низким уровнем шума. На таких картах высокого разрешения закодирован ответ на некоторые ключевые космологические вопросы. Я люблю фотографировать (в возрасте 12 лет мне удалось, разнося по Стокгольму рекламки, накопить денег на первую камеру), так что задача фотографирования Вселенной меня сразу увлекла. Кроме того, мне нравилось возиться со снимками и компьютерной графикой, будь то иллюстрации для школьной стенгазеты «Кураре» или изображения для условно-бесплатной компьютерной игры FRAC (трехмерный клон «Тетриса»), доход от которой позволил мне объехать мир в 1991 году. Так что я бывал счастлив, когда экспериментаторы позволяли мне вместе с ними превращать данные в карты неба.

9

В русском обиходе долго доминировало наименование «реликтовое излучение», подчеркивающее происхождение космического микроволнового фона именно от Большого взрыва. – Прим. пер.