Добавить в цитаты Настройки чтения

Страница 23 из 80

Приливное перемещение водных масс имеет глобальное значение. Течения, вызванные притяжением Луны и Солнца, встречают на своем пути сопротивление материков, островов и морского дна. В результате трения постепенно замедляется вращение нашей планеты вокруг своей оси. Правда, абсолютная величина замедления на первый взгляд совсем незначительна.

Расчеты показали, что в начале нынешней эры сутки были короче всего лишь на 0,035 секунды.

О замедлении вращения нашей планеты свидетельствуют и палеонтологические исследования. Английский ученый Д. Уэллс, изучая вымершие девонские кораллы, обнаружил на их скелетах как суточные, так и годовые кольца нарастания. Оказалось, что в среднем девоне, то есть около 380 миллионов лет назад, наша Земля за год успевала повернуться вокруг своей оси 400 раз. Именно такое количество суточных колец нарастания в год имеется у каждого ископаемого коралла. Так как согласно астрономической теории устойчивости планетных движений продолжительность времени года остается практически неизменной, длина суток 380 миллионов лет назад была равна всего 21 часу 42 минутам.

Таким образом, приливы выполняют роль своеобразного тормоза. Если расчеты верны, земные сутки со временем увеличатся и станут по продолжительности равны лунному месяцу. Тогда наша Земля будет постоянно обращена одной стороной к Луне, как это уже произошло с Луной по отношению к Земле. Водные бугры прекратят свой бег, и приливы перестанут существовать. Правда, это идеализированная картина. На самом деле за счет солнечных приливов Земля стремится повернуться одной стороной также и к Солнцу.

Пессимистическая перспектива будущности приливов не остановила смелого начинания трех молодых людей, работавших в англо-американской организации по изучению моря. Путешествуя на яхте по Тихому океану, они обнаружили в нескольких сотнях километров к югу от архипелагов Фиджи и Тонга небольшой коралловый риф, не обозначенный ни на одной карте. Главная прелесть находки заключалась в том, что дважды в сутки во время отлива риф обнажался и становился островом. Предприимчивые путешественники незамедлительно решили воспользоваться этим обстоятельством и провозгласили на рифе свободную и независимую республику Минерва. Так как новое государство дважды в сутки скрывалось под водой, его первый (и последний!) президент Моррис Девис предложил надстроить риф, используя в качестве материала песок и обломки кораллов. Планы превращения рифа в свайный «город будущего» были неожиданно нарушены вмешательством Тубоу IV, нынешнего правителя королевства Тонга, который заявил, что риф исконная территория (а дважды в сутки акватория) Тонга. Он отказался признать республику Минерва в качестве суверенного государства и послал туда военный катер. Всем трем гражданам новоиспеченной страны пришлось срочно покинуть облюбованный риф.

Волны

Мóря без волн не бывает, его поверхность всегда колеблется. Иногда это лишь легкая рябь на воде, иногда ряды гребней с веселыми белыми барашками, иногда грозные валы, несущие тучи брызг. Даже самое спокойное море «дышит». Его поверхность кажется совершенно ровной и блестит как зеркало, но берег лижут тихие, едва заметные волны. Это океанская зыбь, вестник далеких штормов.

Для научных, а главное, для практических целей о волнах нужно знать все: их высоту и длину, скорость и дальность их передвижения, мощность отдельного вала и энергию волнующегося моря. Нужно знать глубину, на которой еще ощущается волновое движение воды, и высоту заброса волнами брызг.

Первые измерения волн Средиземного моря сделал в 1725 году итальянский ученый Луиджи Марсильи. На рубеже XVIII и XIX веков регулярные наблюдения за морскими волнами и их измерения проводились во время дальних плаваний по Мировому океану русскими капитанами И. Крузенштерном, О. Коцебу и В. Головиным. Этим мореплавателям и ученым приходилось довольствоваться ограниченными техническими возможностями того времени и самим разрабатывать и применять методику исследований.

В наши дни волны изучаются с помощью сложных и очень точных приборов, действующих автоматически и выдающих информацию в виде столбцов готовых цифровых данных.



Проще всего измерять волны вблизи берега на мелком месте. Для этого достаточно воткнуть в дно футшток. Имея в руках хронометр и записную книжку, легко узнать высоту волны и время между подходом двух волн. При помощи нескольких таких мерных линеек можно определить также длину волны и, таким образом, вычислить ее скорость. В открытом море дело значительно осложняется. Для этой цели приходится устраивать сложное сооружение, состоящее из большого поплавка, который затапливают на некоторую глубину и укрепляют на длинном тросе с помощью мертвого якоря. Затопленный поплавок служит местом прикрепления все той же мерной линейки. Показания такой установки не отличаются высокой точностью, кроме того, она имеет еще один существенный недостаток: наблюдатель все время должен находиться вблизи от футштока, тогда как волны и ветер стремятся отнести его корабль в сторону. Во времена парусного флота держать судно на одном месте практически было невозможно, и потому высоту волн измеряли на ходу. С этой целью в мерную линейку превращали мачту одного из двух участвовавших в измерениях кораблей, которые на небольшом расстоянии следовали друг за другом. Наблюдатель, стоя на корме переднего корабля, следил, как гребень закрывает от него мачту второго судна, и таким образом оценивал высоту волны.

Волнение 5 баллов.

В начале этого века измерение высоты волн начали производить с помощью очень чувствительного барометра (альтиметра). Этот прибор точно регистрирует подъем и опускание судна на волнах, но он, к сожалению, ощущает также и всякие помехи, в частности перепады барометрического давления, которые быстро наступают и неоднократно повторяются при сильном ветре.

Гораздо точнее реагируют на волнение манометры, лежащие на дне. При прохождении волны давление над прибором меняется, а сигналы по проводам поступают на сушу или регистрируются прямо на дне самописцем. Правда, таким способом можно измерять высоту волн только на мелководье, где глубина сравнима с высотой волн. На больших глубинах в соответствии с законом Паскаля давление выравнивается и с увеличением глубины все меньше зависит от высоты волн.

Очень точные и разнообразные данные о волнах получаются в результате обработки стереоскопических фотоснимков поверхности океана. Для этого две синхронно работающие фотокамеры помещают на разных мачтах одного судна, на концах крыльев низко летящего над морем самолета или даже на двух самолетах, идущих параллельным курсом. Путем фотограммометрической обработки снимков восстанавливают рельеф моря в момент фотографирования. Получается как бы картина застывших волн. На этом парадоксальном макете волнующегося, но неподвижного моря производят любые нужные измерения.

Главная сила, вызывающая волнения, — это ветер. В тихую погоду, особенно по утрам, поверхность моря кажется зеркальной. Но стоит подняться хотя бы самому слабому ветру, как за счет трения воздуха о поверхность воды в нем возникают завихрения. В результате образования вихрей над гладкой водной поверхностью давление становится неравномерным, что приводит к ее искажению — появляется рябь. За вершинами ряби процесс вихреобразования усиливается, и в конце концов это приводит к образованию волн, распространяющихся в направлении ветра.

Слабый ветер вызывает возмущение лишь тончайшего слоя воды; волновой процесс при этом определяется поверхностным натяжением. При усилении ветра, когда длина волнышек достигает примерно 17 миллиметров, сопротивление поверхностного натяжения оказывается преодоленным и волны становятся гравитационными. В этом случае ветру приходится вести борьбу с действием силы тяжести. Если ветер переходит в шторм, волны достигают гигантских размеров.