Страница 36 из 65
Фоссил: Скажите, сэр, из какого вы университета?
Плотвелл: Из знаменитого Краковского…
Фоссил:…И какого аркана вы магистр?
Плотвелл: Коробочки для табака.
Фоссил: Табакерки.
Плотвелл: Да, табакерки. Это есть самое истинное золото.
Фоссил: Что из этого следует?
Плотвелл: Я делать золото из свинца под руководством Великой церкви Кракова.
Фоссил: Какими операциями?
Плотвелл: Обжигом, переплавкой, очисткой, возгонкой, амальгамированием, атмосферными осадками, испаряемостью.
Фоссил: Осторожнее! Что вы говорите? Испаряемости золота еще пока никто не видел.
Плотвелл: Не мне учить прославленного доктора Фоссилу — именно так получать неспелое золото.
Фоссил: Сказано истинно философом. Как наш язык отличается от юридического! Возьмем, например, определенные документы парламента, которыми установлены два значения слова вырубка: углубление в шахту и вырубка молодого леса.
Далее имитация научной речи становится еще более гротескной, и в духе довольно злой сатиры поднимаются темы определения географической долготы у мореходов, изобретения производной и дифференциалов:
Фоссил: Я сейчас не склонен к экспериментам.
Плотвелл: …Вы что-нибудь понимаете в долготе?
Фоссил: Я не имею дела с тем, что существует только в фантазиях. Меня больше увлекает создание эликсира.
Плотвелл: А как часто ваша думать о производной?
Фоссил: Я не признаю ничего, кроме ртути.
Плотвелл: Ха-ха! Я имею в виду количественные характеристики.
Фоссил: Самое большое количество вещества, с которым я имел дело, — три кварты за один день.
Плотвелл: Не будет вас труд объяснить, в чем секрет гидрологии, геологии, минералогии, гидравлики, акустики, пневматики и логарифмирования?
Фоссил: Это всё — вне сферы моих интересов.
Сегодня нам кажется странным, что современники столь непочтительно высмеивали Ньютона и подвергали жесткой критике его работы. Но всякая новая теория прямо или косвенно бросает вызов существующим доктринам, угрожая рано или поздно занять их место в мировоззренческой структуре общества. Теория Ньютона не стала исключением. Это было ее силой и ее слабостью. Второе уязвимое место своей системы ученый называет сам — абсолютное пространство, которое он считал плоским и имеющим одни и те же свойства в любой точке Вселенной. Именно эти два постулата теории Ньютона жестко критиковал Лейбниц, и в общем-то справедливо, потому что они противоречат даже нашему повседневному опыту: земная поверхность воспринимается нами плоской, в то время как во времена Ньютона уже любой моряк знал, что это не так.
Земля имеет форму шара, поэтому каждый из двух наблюдателей, расположенных в противоположных точках экватора, может заявить: «В какую бы сторону я ни повернулся, я буду стоять лицом к другому наблюдателю!»
К такому выводу не может прийти обитатель плоской Земли или, по крайней мере, считающий Землю плоской на том основании, что на небольших расстояниях он не способен отличить поверхность огромной сферы от плоскости. Подобной близорукостью грешит теория Ньютона. Иначе говоря, ученый в теории ведет себя так: выплывая в космос с целью его изучения, он в одной руке держит футшток,[6] в другой — карманные часы. Затем он предполагает, что весь мир устроен так же, как то пространство, которое он видит перед собой. А это ниоткуда не следует.
Более того, даже если пространство не плоское, оно не обязательно сферическое, иначе говоря, оно не обязано везде иметь положительную кривизну. Пространство может менять свою кривизну, содержать седловые точки,[7] из-за чего движение тел в таком пространстве может быть более предпочтительным в одних направлениях, нежели в других. Мы по-прежнему будем видеть, как планеты движутся по орбитам, но причиной их движения будет не гравитационное поле, а геометрия пространства.
На рисунке показаны последовательные этапы превращения сферы, имеющей положительную кривизну, сначала в цилиндр с нулевой кривизной, а затем в гиперболоид вращения с отрицательной кривизной поверхности.
Во времена Ньютона требовать большего от любого, самого одаренного ученого, было невозможно — математика пока была не в силах постичь реальный мир. О его свойствах догадывались лишь наиболее просвещенные и вдумчивые философы. Они предлагали рассматривать пространство как абсолютную систему координат, сетку. Ньютон упростил представления о мире в ущерб реальности. Лейбниц, не согласившись с ним, произнес пророческие слова: «Я принимаю термин „пространство“ но при этом он будет означать нечто относительное, такое же, как и время».
У Ньютона время тоже было абсолютом. Оно имело решающее значение при астрономических расчетах: мы не знаем, как далеко от нас расположены звезды, и можем лишь фиксировать моменты их прохождения через меридиан. По этой причине мореходы призывали к совершенствованию двух главных навигационных приборов — телескопа и часов.
В первую очередь требовалось улучшить телескоп — этим занялись в новой Королевской обсерватории в Гринвиче. Инициировал работу вездесущий Роберт Гук, который вместе с Кристофером Реном проводил реконструкцию Лондона после великого пожара 1666 года. Мореплаватели теперь могли определять свое местоположение, пользуясь новой точкой отсчета — Гринвичским меридианом, проходящим через центральную обсерваторию. Этот меридиан определял два ключевых репера: нулевую долготу и гринвичское время.
Вторым новшеством стало усовершенствование часового механизма. Часы превратились в символ эпохи, потому что благодаря теории Ньютона они нашли практическое применение в открытом море. Хронометр, показывающий время по Гринвичу, помогал морякам ориентироваться в океане. Принцип расчетов предельно прост: Земля совершает полный оборот вокруг своей оси по отношению к Солнцу за 24 часа, следовательно, на каждый из 360 градусов она поворачивается за четыре минуты. Матрос, который видит Солнце в кульминации (в самой высокой точке над горизонтом), смотрит на хронометр и понимает по разнице во времени, на какой он находится долготе.
Правительство пообещало вручить приз в размере 20 000 фунтов стерлингов тому, кто сумеет разработать часы, по которым можно было бы ориентироваться с точностью до половины градуса во время шестинедельного похода. Лондонские производители часов (в их числе Джон Харрисон) создали совершенно гениальный механизм, маятник которого исправно работал независимо от крена судна.
Эти технические задачи спровоцировали в конце XVII века изобретательский бум. Справедливости ради стоит отметить, что проблема учета точного времени и сегодня вдохновляет ученых и инженеров на оригинальные и остроумные придумки. Действительно, морской поход корабля сродни звездным путешествиям. Как звезда перемещается в пространстве и как мы определяем, сколько времени занимает ее путь? Стартовой точкой подобных расчетов стали навигационные карты мореходов, потому что они заставили задуматься об относительности времени.
Часовые мастера XVII–XVIII веков были аристократией среди ремесленников подобно мастерам-каменщикам в Средние века, что говорит о важности этих приборов в жизни людей. Часовщики стремились к тому, чтобы хронометры не только показывали точное время, но и воспроизводили движение планет по небу.
Господство идей Ньютона длилось без малого два столетия. Если бы его призрак пришел в Швейцарию в конце XIX века, то все часы в унисон должны были пропеть ему: «Аллилуйя»! Однако, по иронии судьбы, в начале 1900-х именно в Берне, в двухстах ярдах от старинной часовой башни, начиналась научная карьера человека, который снова перевернул наши представления о мире с ног на голову. Его звали Альберт Эйнштейн.
6
Футшток — простейший прибор для определения колебаний значений уровня моря. Обычно представляет собой деревянную линейку, на которой деления обозначены разноцветными метками.
7
Седловая точка — точка, в которой функция двух аргументов является одновременно максимумом относительно одной переменной и минимумом относительно другой.