Добавить в цитаты Настройки чтения

Страница 1 из 124

A

Широко известная читателю по предыдущим изданиям монография известных американских специалистов посвящена быстро развивающимся областям электроники. В ней приведены наиболее интересные технические решения, а также анализируются ошибки разработчиков аппаратуры: внимание читателя сосредоточивается на тонких аспектах проектирования и применения электронных схем. На русском языке издается в трех томах.

Том 2 содержит сведения о прецизионных схемах и малошумящей аппаратуре, о цифровых схемах, о преобразователях информации, мини- и микроЭВМ и микропроцессорах.

Для специалистов в области электроники, автоматики, вычислительной техники, а также студентов соответствующих специальностей вузов и техникумов.

Хоровиц Пауль, Хилл Уинфилд

Глава 7

Разаработка прецизионной аппаратуры на операционных усилителях

Дифференциальные и измерительные усилители

Шумы усилителей

Измерение шума и источники шума

Помехи: экранирование и заземление

Схемы, не требующие пояснений

Дополнительные упраженения

Глава 8

Основные логические понятия

Логические уровни

ТТЛ и КМОП

Комбинационная логика

Последовательностная логика

Моностабильные мультивибраторы

Последовательные функции, реалзуемые на стандартных ИМС

Некторые типовые цифровые схемы

Патология в логических схемах

Схемы, не требующие пояснений

Дополнительные упражнения

Глава 9

Сопряжение логических КМОП- и ТТЛ-элементов

Цифровые сигналы и длинные линии

Аналого-цифровое преобразование

Примеры А/Ц-преобразования

Схемы фазовой автоподстройки частоты

Псевдослучайные двоичные последовательности и генераторы шума

Схемы, не требующие пояснений

Дополнительные упражнения

Глава 10

Мини-ЭВМ, микроЭВМ и микропроцессоры

Набор команд компьютера

Сигналы магистрали и ее функционирование

Системные концепции программного обеспечения

Принципы передачи данных

Таблицы

7

8



9

10

notes

1

2

3

4

5

6

7

8

9

10

11

Хоровиц Пауль, Хилл Уинфилд

«Искусство схемотехники»

Том 2

(Главы 7–10)

Издание 4-е переработанное и дополненное

THE ART OF ELECTRONICS

Second Edition

Paul Horowitz Harvard University

Winfield Hill Rowland Institute for Science, Cambridge, Massachusetts

CAMBRIDGE UNIVERSITY PRESS

Cambridge

New York Port Chester Melbourne Sydney

Глава 7

ПРЕЦИЗИОННЫЕ СХЕМЫ И МАЛОШУМЯЩАЯ АППАРАТУРА

Перевод Б. Н. Бронина

В предыдущих главах мы рассмотрели многие аспекты проектирования аналоговых схем, включая свойства пассивных элементов и транзисторов, ПТ и ОУ, обратную связь, а также рассмотрели ряд применений этих устройств и методов схемотехники. Но в этих рассуждениях не ставился вопрос о лучшем из возможных вариантов, например о минимизации ошибок усилителя (нелинейность, дрейф и т. д.), или об усилении слабого сигнала с наименьшим искажением за счет «шума» усилителя. Эти вопросы во многих случаях составляют существо дела, и поэтому они являются важной частью искусства схемотехники. Поэтому в данной главе мы рассмотрим методы проектирования прецизионных схем и проблемы шумов усилителя. При первом чтении всю эту главу можно пропустить, за исключением разд. 7.11, в котором вводится понятие «шум усилителя». Для понимания следующих глав материал данной главы несуществен.

Разаработка прецизионной аппаратуры на операционных усилителях

При измерении и управлении часто нужны высокопрецизионные схемы. Схемы управления должны быть точными, устойчивыми относительно времени и температуры, а их поведение - предсказуемым. Так же и ценность измерительного прибора зависит от его точности и стабильности. Почти во всех областях электроники существует желание сделать все более точно — можно назвать это стремлением к совершенству. Если вам и не нужна такая высочайшая точность, приятно иметь точные приборы, чтобы до конца понимать, что происходит.

7.01. Соотношение точности и динамического диапазона

Понятия точность и динамический диапазон легко спутать, поскольку иногда одна и та же аппаратура используется для достижения и того, и другого. Может быть, разницу можно лучше всего пояснить на ряде примеров: у 5-разрядного цифрового многошкального прибора — прецизионная точность; измерения напряжения им делаются с точностью 0,01 % и выше. Такое устройство также имеет широкий динамический диапазон — от миливольт до вольт на одной и той же шкале. Точный десятичный усилитель (например, с коэффициентом усиления, выбираемым из ряда значения 1, 10, 100) и прецизионный опорный источник напряжения могут иметь достаточную точность, но не обязательно широкий динамический диапазон. Примером устройства с широким динамическим диапазоном, но скромной точностью служит шестидекадный логарифмический усилитель (ЛУ), построенный на тщательно подогнанных ОУ, но с применением элементов, имеющих точность всего лишь 5 %; даже при использовании более точных элементов ЛУ может иметь ограниченную точность за счет несоответствия при крайних значениях тока характеристик используемого для преобразования транзисторного перехода логарифмической зависимости. Другой пример устройства с широким динамическим диапазоном (диапазон входного тока более чем 10000:1) при весьма скромной точности 1 % — это кулонометр, описанный в разд. 9.26. Вначале он был спроектирован для определения суммарного заряда электрохимического элемента — величины, которую достаточно знать с точностью 5 %, но которая образуется в результате действия тока, изменяющегося в широком диапазоне. Общее свойство устройств с широким динамическим диапазоном это то, что входное смещение должно быть тщательно отрегулировано для обеспечения пропорциональности при уровне сигнала, близком к нулю. При проектировании прецизионной аппаратуры это также необходимо, но там для удержания суммарной погрешности в рамках так называемого бюджета погрешности требуются также прецизионные элементы, устойчивые генераторы опорных напряжений, и внимание ко всем возможным источникам погрешностей.

7.02. Бюджет погрешностей схемы

Несколько слов о бюджете погрешности. Начинающие разработчики часто попадают в ловушку, считая, что несколько стратегически правильно расположенных прецизионных элементов дадут устройство с прецизионными параметрами. В каких-то редких случаях, может быть, так и получится. Но даже схема, битком набитая резисторами 0,01 % и дорогостоящими ОУ, не оправдывает ваших ожиданий, если на каком-то участке схемы смещение выходного тока, умноженное на сопротивление источника, даст погрешность смещения напряжения, например 10 мВ. Подобного рода погрешности встречаются почти в любой схеме, и важно их выявить, хотя бы для того, чтобы найти место, где требуется устройство с лучшими параметрами или где нужно изменить схему. Такой подсчет бюджета погрешности рационализирует проектирование, во многих случаях позволяет обойтись недорогими элементами и точно оценить характеристики схемы.