Страница 4 из 13
Но и после того, как корабль полетит по круговой орбите, процесс посадки его на нашу планету будет еще далек от завершения. Начнется самое трудное-вход в плотные слои атмосферы. Этот этап характеризуется снижением скорости от 8 км/сек до обычной посадочной, равной примерно 0,07 км/сек. Такое стократное гашение скорости во многом определяется формой возвращаемого спутника.
Каковы же наиболее вероятные конструкции летательных аппаратов, способных погасить космическую скорость при возвращении из космоса?
ВОЗВРАЩАЕМЫЙ СПУТНИК
В борьбе за повышение скорости полета непрерывно совершенствовались аэродинамические формы летательных аппаратов. Когда самолет перемещался в воздухе со скоростью современного автомобиля, форма его напоминала этажерку для книг. Бипланы и трипланы, опоясанные паутиной лент-расчалок, уступило место монопланам. С увеличением скорости полета и ростом мощности двигателей крылья становились все изящнее и тоньше, они все дальше отбрасывались назад и все ближе прижимались к фюзеляжу. Самолеты становились похожими на стрелы. И, наконец, самые быстроходные аппараты современности — межконтинентальные и космические ракеты — совсем сбросили крылья.
Крылья космическому аппарату в космосе, не нужны. Там, в вакууме, им не на что опереться. Но для гашения скорости аппарата при входе в атмосферу Земли крылья окажутся очень кстати. Ведь даже орел, пикирующий из поднебесья к земле на свою жертву, чтобы не разбиться, раскрывает во всю ширь могучие крылья.
К настоящему времени опубликованы многие проекты [8] летательных аппаратов, предназначенных для возвращения на Землю. Среди них усиленно исследуются модели в форме крылатого планера, надувного аппарата, баллистической капсулы, спутника с аэродинамическим тормозом и другие. Познакомимся вкратце с каждым из них.
Крылатый планер
Этот несуществующий пока летательный аппарат похож на носок штыка (рис. 4). Он должен выдержать сильный разогрев при «пробивании» атмосферы и доставить космонавта невредимым на родную планету.
В конструкции аппарата много общего с современным высокоскоростным самолетом, имеющим треугольное крыло. Только построят его не из обычных, а из жаропрочных сплавов. Особенно трудно защищать от сгорания нижнюю поверхность фюзеляжа и крыльев, так как при входе в атмосферу крылатый планер для снижения скорости резко поднимет вверх свою носовую часть. Чтобы тонкие концы крыльев при таком полете «плашмя» не обгорели, аппарат их сложит назад-на свою «спину».
Со сложенными крыльями корабль будет напоминать карандаш, летящий не острием вперед, а боком. Обогнув земной шар, планер войдет в плотные слои атмосферы и уменьшит свою скорость до скорости современного самолета. Теплозащитный экран на нижней поверхности фюзеляжа при этом может разогреться до температуры выше 160 °C. Но основная внутренняя конструкция, несущая нагрузку, и кабина планера, защищенные мощным слоем теплоизоляции, нагреются не более чем до 20 °C.
Необычна будет и поверхность планера. В отличие от гладкой металлической обшивки сверхзвуковых самолетов ее изготовят из небольших квадратов, скрепленных один с другим подвижными шарнирами. Такая оболочка из молибденового сплава, внешне напоминающая кожу крокодила или панцирь черепахи, не покоробится даже при очень сильном разогреве.
Хотя крылатый планер войдет в атмосферу «плашмя», сильнее нагреются передние кромки носовой части и крыльев аппарата, потому что именно они будут обтекаться наиболее нагретым потоком воздуха. Поэтому особое внимание придется уделять их защите. Считается целесообразным эти части планера покрывать порошкообразными веществами, способными при высокой температуре переходить в газообразное состояние и отводить при испарении излишнее тепло. Об этом более подробно будет рассказано несколько ниже.
В настоящее время металлурги еще не выпускают в больших количествах сплавов, способных сохранять свои качества при температуре в 165 °C. Поэтому приходится работать и над проблемами охлаждения космических аппаратов. В частности, предлагается [9] все секции теплоизоляции делать полыми и наполнять их тканью, обильно смоченной водой. При такой системе охлаждения не потребуется ни насосов, ни труб. Фитилеподобный материал предотвратит перемещение воды в секциях. При нагревании обшивки вода в секциях будет превращаться в пар и отводиться из задней части летательного аппарата, чтобы избежать чрезмерного давления внутри конструкции.
После того как планер снизится в тропосферу и погасит скорость, он вновь раскроет свои треугольные крылья во всю ширь и начнет заходить на посадку, как обычный самолет.
Надувной космический аппарат
Возьмите металлический шарик весом в 100 г и выточите шар точно такого же веса из дерева. Ясно, что деревянный шар будет больше металлического.
Теперь, сильно размахнувшись, бросьте шарики один за другим с одинаковой силой. Каждый из нас знает, что металлический шар улетит дальше, а деревянный из-за большего сопротивления воздуха быстро снизит свою скорость и упадет ближе.
При разработке проекта надувного космического аппарата используется именно эта зависимость сопротивления от объема, приходящегося на единицу массы. При выводе аппарата на орбиту и сообщении ему космической скорости выгодно, чтобы его объем был минимальным. Другое дело, когда надо погасить скорость. Чтобы аппарат быстро затормозился в воздухе, надо увеличить его размеры.
Летательный аппарат, имеющий экипаж два человека, при входе в атмосферу должен представлять собой треугольник, размер основания которого около 23 м и высота 40 м. При этом нагрузка на крыло не превысит 4 кг на квадратный метр [10]. Это очень небольшая величина, если учесть, что нагрузка на крыло у самолетов иногда превышает 100 кг на квадратный метр.
По мере уменьшения высоты давление встречного потока будет расти. Чтобы сохранить жесткость конструкции, придется постепенно увеличивать внутреннее давление в аппарате, подавая сжатый воздух из баллонов. С высоты 60 км надувной аппарат будет снижаться по спирали, причем скорость при спуске не превысит 100 м/сек.
Возвращение из космоса на таком аппарате кажется очень простым. Однако построить надувной аппарат будет нелегко. Основная трудность состоит в том, что во время гашения скорости поверхность аппарата может разогреться до температуры выше 80 °C, при которой любой известный эластичный материал сгорает.
В последние годы специалисты ряда стран пытаются создать углеродисто-металлический упругий материал, способный выдерживать высокий нагрев. Возможно, это будет проволочная ткань из никелевого сплава, покрытая каучукоподобным материалом.
Баллистическая капсула
Даже при поверхностном ознакомлении с устройством металлических планеров и надувных аппаратов становится ясно, какие сложные проблемы предстоит решить ученым, чтобы гарантировать будущим космонавтам благополучное возвращение на Землю.
Первый космический полет человек совершил, облетев родную планету по эллиптической орбите. Орбита может быть и круговой. Являются ли крылатый планер и надувной космический аппарат единственными аппаратами, способными возвратить человека из космоса?
Возвратиться с эллиптической или круговой орбиты 1 на земную поверхность можно и при помощи так называемой баллистической капсулы.