Добавить в цитаты Настройки чтения

Страница 5 из 19



Но в 1990 году американец Алан Хуанг доказал «жизненность принципа ОВМ». Этим он очень обязан Дэвиду Миллеру, создавшему в 1986 году самый маленький в мире оптический переключатель, настолько маленький, что две их тысячи умещаются внутри буквы «о» обычного газетного шрифта. Тем самым была решена основополагающая проблема: найден эквивалент транзистору. Оптический переключатель Миллера, производимый из сложного синтетического материала, способен, не перегреваясь, изменить направление движения фотонов миллиард раз в секунду.

Взяв переключатель Миллера за основу, Алан пять лет работал над схемой простейшей ОВМ, и она наконец была представлена на обозрение специалистов. Выглядела эта первая экспериментальная ОВМ далеко не так импозантно, как современные ей модели электронных компьютеров. Их возможности тоже пока были несопоставимы: ОВМ не имела «памяти» и могла производить лишь элементарные математические действия. Однако в Центре оптических исследований США считают, что Хуанг хорошо «подтолкнул стрелку на часах технологического прогресса».

Сам же изобретатель полагает, что уже вскоре наиболее мощные вычислительные устройства заимеют оптические «внутренности». Скептики, а их немало, возражали, что преимущества ОВМ должны быть поистине подавляющими, чтобы после всех многомиллиардных затрат промышленный мир решился заменить уже существующий парк компьютеров.

Но, видимо, неоспоримая теоретическая истина, что ОВМ способна функционировать в тысячу раз быстрее, чем ЭВМ, кое-что да значит. Во всяком случае для японцев, которые, как известно, весьма преуспели по части электроники. И если 13 крупных японских компаний, в том числе такие гиганты, как «Мицубиси» и «Ниппон электрик», вместе с Министерством промышленности сочли нужным разработать 10-летний план оптических исследований, то похоже, что завтрашний день вычислительной техники надо искать именно в этом направлении.

В 1994 году американский исследователь Питер Шон подсчитал, что квантовый компьютер вычислит факториал тысячезначного числа всего за несколько часов. В то время как несколько сотен обычных компьютеров потратили бы на эту задачу 1025 лет. Для справки: возраст Вселенной – 1010 лет. Впечатляет?

Быстрыми темпами идет и миниатюризация компьютеров. Так, 33-летний X. Шрикумар, специалист по автоматическим системам из Массачусетского университета (США), в 1999 году создал компьютер величиной с таблетку аспирина. Его мини-компьютер запрограммирован на работу в глобальной сети Интернет, а также способен управлять домашними электроприборами и аппаратурой. Мини-компьютер, вмонтированный в соответствующие устройства, может в нужное время сварить кофе, записать телепередачи на видеомагнитофон и даже самостоятельно включиться в компьютерную сеть. Он состоит из миниатюрного процессора и чипа электронной памяти, куда поступают данные из Интернета.

Шрикумару удалось собрать свой мини-компьютер из деталей, купленных в магазине. Общая стоимость «таблетки» оказалась равной 98 центам. Это почти в 800 раз дешевле аналогичного мини-компьютера, созданного незадолго до этого инженерами Стенфордского университета. Ай да Шрикумар, настоящий компьютерный Кулибин!

Обычно данные вводятся в компьютер через клавиатуру. Еще в 1985 году одна американская компания предлагала использовать для этой цели эластичную перчатку. Снабженная датчиками, соприкасаясь с ладонью, кистью, фалангами и кончиками пальцев, она преобразует движения руки в различные комбинации электрических сигналов. За каждой буквой алфавита, цифрой и знаком препинания закреплен определенный жест. Освоив этот язык жестов, оператор уверенно вводит данные в компьютер, перебирая пальцами в воздухе. Так можно и печатать на электронной пишущей машинке, то бишь клавиатуре.

А в 1993 году появилось устройство, могущее трансформировать «живую» речь человека в компьютерный язык и через несколько секунд распечатать ее в машинописном виде.



Закрепленный на голове монитор, выпущенный германской компанией Круппа еще в 1990 году, открывает широкие перспективы в сфере телекоммуникации. Система, позволяет вести активный диалог между компьютером и человеком. Компьютер получает от человека устные (!) команды, а отвечает визуальной информацией на экране монитора, сопровождая ее словесными комментариями. Это уже диалог почти на равных.

А вы, дорогой читатель, сняв телефонную трубку, наберите цифру «100». Приятный голос с едва заметным металлическим акцентом мгновенно ответит, назвав точное время. И уже никого из нас не удивляет, что ему отвечает компьютер. Напомню, что «говорящие часы» разработали в 1987 году сотрудники Научно-исследовательского института радио. В каждый из моментов времени компьютер выбирал нужную микросхему, считывал ее содержание, преобразуя машинный язык в человеческий голос.

Уже стало привычным, что компьютеры «разговаривают». В ряде случаев они оснащаются синтезаторами речи; многим знаком «металлический» голос компьютера, отвечающего на вопрос или что-то напоминающего. Проблема создания «говорящих» ЭВМ оказалась более простой, чем их обучение «пониманию» человеческой речи и исполнению устных команд. Но и в этой области достигнуты обнадеживающие результаты. Так, в США еще в 1991 году создали программу для компьютера, позволяющую ему «читать по губам», т. е. понимать речь человека по движению его губ. Подобные устройства могут существенно облегчить работу и быт людей, а потому заслуживают широкого распространения.

Компьютеры, которые могут говорить и выполнять отданные им устно распоряжения, уже не новинка. Есть компьютеры, способные разговаривать и слушать. Собрав необходимую информацию, ЭВМ обращается к своей памяти и начинает поиск нужных сведений. Техника голосовой связи с компьютером включает синтез речи и выполнение голосовых команд, но первая задача проще. Искусственная речь образуется благодаря специальной системе, которая способна накапливать в памяти звуки, входящие в состав слов (так называемые фонемы), и различные правила их комбинаций. В нужный момент информация, поступающая из памяти, преобразуется в звуки, имитирующие человеческий голос.

Системы речевого синтеза применяются сейчас во многих областях. Фотоаппарат «Токер», например, приятным женским голосом советует, как использовать вспышку или выбрать правильное расстояние при фотографировании. Компьютер «Амиго» способен громким голосом читать текст, появляющийся на его экране. Есть модели наручных часов, сообщающих время. Всего не перечислишь.

Не следует, однако, думать, что эта техника используется только в какой-либо бытовой аппаратуре. Можно привести примеры ее промышленного применения. Система с синтезированием речи входит в состав телефонной справочной службы Нью-Йорка. Работает она следующим образом: когда поступает запрос о номере телефона, оператор с помощью ЭВМ находит нужный номер и включает механизм искусственного голоса, дважды сообщающий его запрашивающему. Сам же оператор в это время обслуживает уже другого абонента. Это сокращает время операции на 5—10 секунд. Такая система позволяет каждому работнику в течение смены ответить на 20–25 % запросов больше.

Техника опознавания голоса оказалась намного сложнее. Чтобы научить компьютер «понимать» живую речь, слова нужно преобразовать в цифровой код. Любое слово должно быть закодировано с помощью комбинаций цифр «0» и «1», которые вводятся в память машины. Когда ЭВМ получает какую-либо голосовую команду, она преобразует ее в цифровые комбинации и сопоставляет с хранящимися в памяти. Если там находится эквивалент, то компьютер выполняет действие, предусмотренное командой.

В США уже давно используются машины, способные выполнять некоторые простые устные приказы. В аэропорту Чикаго, например, при сортировке багажа громко произносится название аэропорта назначения, и чемоданы автоматически подаются куда надо. Абоненты одной из телефонных сетей производят вызовы без набора номеров. Они говорят: «Соедините с квартирой» или «Дайте контору», и номер, записанный в памяти ЭВМ, набирается автоматически. Похожим образом действуют сейчас даже некоторые модели мобильных телефонов.