Добавить в цитаты Настройки чтения

Страница 14 из 24



Однако неопровержимых доказательств тектоники плит на древнем Марсе пока нет.

Венера

Эта планета изучена гораздо хуже, чем Марс. Плотная атмосфера с густыми облаками скрывает ее поверхность от наблюдений во всех диапазонах, кроме радиоволн, а высокая температура (около 450 °C) и давление на поверхности очень ограничивают возможности приборов спускаемых аппаратов. До сих пор ни один зонд не проработал на поверхности Венеры более двух часов.

Почти все, что известно о рельефе Венеры, мы знаем из радарных наблюдений зондов «Венера-15», «Венера-16» и «Магеллан». Венера по размерам близка к Земле, но ее рельеф и геология сильно отличаются от земных. Перепад высот на поверхности Венеры составляет всего 13 км (на Земле – 20 км от вершины Эвереста до Марианской впадины, на Марсе – свыше 30 км). Большая часть поверхности по высоте находится в пределах плюс-минус 1 км от среднего уровня, т. е. на Венере нет ничего похожего на перепад между материками и океанами Земли или северным и южным полушариями Марса (рис. 3.6).

Три высочайшие горные системы Венеры – хребты Максвелла, Акна и Фрейи – находятся в северном полушарии вокруг равнины Лакшми. Их высота составляет до 7 км (хребты Акна и Фрейи) и даже до 11 км (горы Максвелла). На вершинах гор лежат отложения каких-то хорошо отражающих радиоволны веществ, подобно белому снегу на вершинах гор Земли. «Снег» на Венере лежит при температуре около 350 °C и предположительно состоит из сульфидов свинца и висмута. Поверхность Венеры густо покрыта низкими щитовыми вулканами. Крупнейшие из них по диаметру основания сравнимы с Олимпом на Марсе, но в высоту не превышают 3 км. Количество мелких вулканов диаметром 10–20 км измеряется сотнями тысяч. Вулканы и лавовые равнины занимают до 80 % поверхности Венеры.

Хотя на Венере сейчас нет глобальной тектоники плит, в ее рельефе отражены частые местные тектонические явления. Благодаря им возникли многочисленные одиночные разломы и складки, а также тессеры – сложноскладчатые участки рельефа, которые были смяты в разное время в нескольких разных направлениях. Горные хребты северного полюса могут быть следами существовавшей в далеком прошлом тектоники плит, подобно Земле.

Метеоритные кратеры встречаются реже, чем на Луне и Марсе, кратеров диаметром менее 30 км практически нет, потому что мелкие метеориты сгорают в атмосфере. Кратеры расположены равномерно по всей планете. Возраст поверхности, вычисляемый по плотности кратеров, составляет, по разным оценкам, от 500 до 800 млн лет, причем возраст всех участков коры практически одинаков. Это резко отличает Венеру от Земли, где, несмотря на геологическую активность, сохранились крупные блоки коры возрастом 2–3 млрд лет.

Важной особенностью Венеры является отсутствие магнитного поля. Для генерации магнитного поля планетой нужны три условия: электропроводящая жидкость внутри планеты, конвективные движения в ней и вращение планеты. В планетах земной группы электропроводящей жидкостью является железное ядро, которое у Венеры явно есть и сопоставимо по размерам с ядром Земли. Вращение Венеры медленное, но его достаточно для генерации слабого магнитного поля на уровне современного Марса (1 % от земного). Следовательно, в ядре Венеры отсутствует конвекция. Так как радиоактивный распад неизбежно выделяет тепло в ядре и мантии, без конвекции их температура должна расти. По-видимому, рост температуры продолжается до тех пор, пока кора Венеры не проплавляется сразу во многих местах, вызывая одновременное извержение тысяч вулканов. Эти извержения быстро охлаждают верхнюю мантию, и вскоре планета опять надолго замирает.

Глава 4



Атмосфера и климат Земли, Марса и Венеры

В наше время три планеты земного типа имеют очень разные атмосферы. Плотность атмосферы Венеры примерно в 5000 раз выше, чем Марса, а атмосфера Земли выделяется своим химическим составом с высоким содержанием кислорода. Расчеты формирования планет, однако, показывают, что все три планеты образовались из вещества примерно одинакового состава. Следовательно, плотность и состав их атмосфер в древности были больше похожи друг на друга. Почему же за 4,5 млрд лет планеты и особенно их атмосферы стали такими разными?

Основной источник пополнения атмосферы – газы, которые выделяются из расплавленных минералов. В наше время это происходит при вулканических извержениях, а в древности эти газы выделялись также при падениях астероидов и прямо из океана магмы в те периоды, когда планета для этого была достаточно горяча. Усредненный состав газов из современных вулканов Земли выглядит следующим образом: 80–85 % – водяной пар, 10–12 % – СО2, (углекислый газ) 5 % – SO2 (сернистый газ), 1–2 % – HCl (соляная кислота), малые примеси водорода, сероводорода, метана и угарного газа.

Безвозвратные потери атмосферы в космос происходят двумя путями. Во-первых, при тепловом движении молекул некоторые из них могут получить скорость выше второй космической и улететь от планеты. Во-вторых, молекула атмосферы может получить высокую скорость и улететь от планеты при столкновении с заряженной частицей солнечного ветра. В обоих случаях легкие молекулы теряются чаще. Так, Земля и Венера (вторые космические скорости – 11,2 и 10,4 км/с) легко теряют водород и гелий по тепловому механизму, но удерживают все остальные газы. Марс (вторая космическая скорость – 5 км/с) также будет заметно терять воду, метан и аммиак, но удержит азот, кислород и углекислый газ. «Сдувание» атмосферы солнечным ветром зависит больше не от массы планеты, а от наличия магнитного поля: молекулы атмосферы при столкновениях с частицами солнечного ветра обычно получают скорость намного выше второй космической, но ионизируются, оказываются захваченными магнитным полем, постепенно теряют в нем энергию и возвращаются в атмосферу. Магнитное поле Земли практически полностью защищает атмосферу от разрушения солнечным ветром, а для Марса с его слабым полем и Венеры вовсе без магнитного поля это основной механизм потери атмосферы. Кроме того, атмосферные газы могут вступать в химические реакции между собой и с поверхностью планеты. Например, при химическом выветривании горных пород углекислый газ переходит из атмосферы в карбонатные осадки:

CaSiO3 + 2 CO2 + H2O → Ca (HCO3) 2 + SiO2 (на суше)

Ca (HCO3) 2 → CaCO3 + СO2 + Н2O (в воде)

Если карбонатные осадки попадают в горячие недра планеты, например, при поддвигании (субдукции) океанского дна под материк, карбонаты разрушаются и СO2 выделяется вновь в составе вулканических газов. Так даже на безжизненной планете происходит круговорот углерода.

Другие газы вступают в химические реакции прямо в атмосфере под действием ультрафиолетовых лучей (фотолиз). Широко известно, что из кислорода таким образом образуется озон, защищающий поверхность Земли от жесткого ультрафиолета. В геологических масштабах времени, впрочем, кислород и озон находятся в равновесии, и глобального превращения всего кислорода в озон можно не опасаться. Для других газов это не так. Например, метан под действием ультрафиолета разлагается с выделением водорода. Если в атмосфере нет других химически активных газов, то образуются сложные углеводороды – производные ацетилена. Они придают оранжевый цвет атмосфере Титана, спутника Сатурна. Аммиак похожим образом разлагается на водород и азот, сероводород – на водород и пылинки элементарной серы. При том потоке ультрафиолета, который достигает атмосферы Земли и Марса, время жизни метана, аммиака и сероводорода в атмосфере не превышает 1 млн лет. Сернистый газ (SO2) тоже подвержен фотолизу. В отсутствие кислорода он разлагается на серную кислоту (Н2SO4) и элементарную серу, а в кислородной атмосфере весь превращается в серную кислоту. Вода, азот и углекислый газ устойчивы к ультрафиолетовому излучению.