Страница 17 из 32
Мы снова видим плодотворность изучения простых делителей. Мы можем мало сказать о числе N в целом, зато можем делать утверждения о его простых делителях, которые полны интересных свойств! Таким образом мы в конце концов узнаем что-то о числе N. Этой плодотворной стратегией Ферма пользовался несколько раз. Он сам жаловался Мерсенну в 1636 году, что в арифметике не существует общих принципов решения задач. Через несколько лет сам Ферма установил некоторые из таких принципов.
После 1644 года Ферма внезапно перестал писать своим корреспондентам, и его молчание продлилось десять лет. Этому, без сомнения, поспособствовала в 1648 году смерть его главного корреспондента, Марена Мерсенна, а также тот факт, что его отношения с другими привычными корреспондентами, Френиклем и Брюларом, охладились чуть ли не до разрыва.
Затворничество математика завершилось, когда Блез Паскаль, сын Этьена, обратился к Ферма, чтобы поставить перед ним задачу, с которой началась теория вероятностей. Во время этой переписки ученый воспользовался случаем и начал ставить задачи по теории чисел, надеясь заинтересовать ими Паскаля. Ферма говорил, что важно создать братство математиков, которые, соревнуясь между собой и одновременно сотрудничая, решали бы задачи, поставленные этой теорией. Один из результатов, о которых сообщил Ферма, очень красив. Чтобы объяснить его, нужно вернуться к предмету другого большого арифметического интереса пифагорейцев: треугольным числам и их обобщению — прямоугольным числам.
РИС. 1
РИС. 2
РИС. 3
Треугольное число — это число, которое можно разложить так, чтобы слагаемые образовывали треугольник (рисунок 1). Например, число 10 обладает данным свойством (10 = 1 + 2 + 3 + 4), то есть является суммой первых четырех натуральных чисел. Число 10 лежало в сердце пифагорейской мистики. Они называли его тетраксис, и оно символизировало собой четыре стихии, гармонию сфер и упорядочивание пространства (0 измерений, 1 измерение, 2 и 3 измерения, представленные в каждой линии). Пифагорейцы молились / и клялись им, считая его создателем богов и людей и источником изменяющего творения. Также 1, 3, 6 и 15 — треугольные числа (рисунок 2). А 6 — это первое совершенное число. На самом деле любое совершенное число является треугольным.
Число будет квадратным, если оно образовано квадратом некоего целого числа. Квадратные числа — это 1, 4, 9, 16, 25... и так далее (рисунок 3).
У нас уже есть все исходные данные, чтобы получить результат Ферма: любое число либо треугольное, либо является суммой двух или трех треугольных чисел. Оно также является либо квадратным, либо суммой двух, трех или четырех квадратных чисел. Кроме того, оно либо пятиугольное, либо сумма двух, трех, четырех или пяти пятиугольных. И так далее.
Помимо переписки с Паскалем, Ферма оставил этот результат записанным на другом поле "Арифметики" Диофанта. Неудивительно, что он сопровождается замечанием, практически идентичным замечанию к последней теореме ученого: "Доказательство этого чудесного результата не помещается на этом поле, но я собираюсь написать книгу на данную тему". Как и во многих других случаях, Ферма не сдержал своего обещания: трактат так и не был написан, и доказательства так и не было найдено. Лагранж и Гаусс доказали частные случаи, и, в конце концов, Коши привел общее доказательство в 1812 году. В любом случае, Ферма не удалось заинтересовать Паскаля. В 1654 году тот ответил вежливым и скромным письмом, в котором говорил, что не способен достичь той же математической высоты, что и Ферма, и призывал его продолжать свои исследования и публиковать результаты.
Поскольку Ферма не мог обратиться напрямую к Френиклю, после отказа Паскаля он разработал новый план. Ученый познакомился с трудами англичанина Джона Уоллиса, прочитав книгу, которую ему предоставил Дигби. И он, и Уоллис разработали очень похожий подход к решению проблем, связанных с суммами степеней целых чисел. Полный надежд Ферма обратился к Уоллису, пытаясь заинтересовать его проблемами, которые отверг Паскаль.
Издание 1621 года "Арифметики" Диофанта, в котором Ферма сделал много известных сегодня заметок.
Джон Уоллис принял вызов, который Ферма бросил математикам своего времени.
С 1636 года Ферма, как общеизвестно, переписывался с Маре ном Мерсенном (на изображении), монахом ордена минимов. Последний поддерживал контакт с главными парижскими математиками того времени, среди которых выделяется Этьен Паскаль, отец Блеза.
Виконт Уильям Браункер (на изображении), как и Джон Уоллис, интенсивно переписывались с Ферма в 1657 и 1658 годах.
Однако для привлечения Уоллиса Ферма разработал иную стратегию. Если Паскалю он прямо предлагал сотрудничество, то Уоллису бросил вызов. Ферма написал 3 января 1657 года из Кастра письмо Клоду Мартену де Лорандьеру с просьбой распространить его в математическом сообществе. В нем он говорил о двух частных проблемах. Ферма высокомерно говорил, что Нарбонская Галлия (то есть Южная Франция) даст решение, если Англия, Фландрия и Кельтская Галлия (то есть Париж) будут неспособны сделать это. Здесь таился скрытый вызов Френиклю, который имел возможность прочитать письмо.
Эти проблемы (а также многие другие, которые Ферма также поднял в своей корреспонденции, хотя и не говорил о них открыто) требовали знания уравнения Пелля, общее решение которого Ферма, без сомнения, нашел: х2 - py2 = 1, если р — простое число.
К несчастью, Ферма не получил желаемого ответа. Корреспонденты считали его задачи неразрешимыми. Так что через некоторое время ученый опубликовал некоторые свои результаты и заявил о необходимости решения теоретических проблем более общего характера. В частности, Ферма изложил уравнение Пелля и попросил решений.
Данное письмо было практически исповедью. Ферма начинал жаловаться на отсутствие исследователей, которые занимались бы чисто арифметическими проблемами (задачами теории чисел). Он связывал это с тем, что геометрия и ее методы запятнали арифметику. Его проект, говорил Ферма, заключался в том, чтобы исключить ее влияние и относиться к арифметике как к отдельной науке, такой же тонкой, строгой и сложной, как и сама геометрия. По его мнению, арифметика должна отдать должное доктрине натуральных чисел как своему наследию.
Программа Ферма теперь была открыта. Сам того не зная, поскольку он считал, что возрождает древнее искусство, математик закладывал основы чего-то совершенно нового: арифметической науки, которую, без влияния геометрии, можно было бы изучать саму по себе с тем же успехом, что и греческую геометрию. К несчастью, никто до Эйлера не рассматривал ее таким образом. Ферма был одинок среди современников. Френикль решил первую проблему и послал четыре результата. Он был неспособен (и, возможно, Ферма знал это) дать ее решение в общем виде. Ответ Уоллиса не мог быть более обескураживающим. Он написал виконту Уильяму Браункеру, который довел до него вызов Ферма, что не существует общих уравнений для решения подобных задач, и на них у него, занятого другими делами, нет времени. Далее он презрительно предложил тривиальное решение обеих проблем: число 1. Его ответ не дошел до Ферма. Он остался в Париже, где Дигби показал письмо Френиклю, который, в свою очередь, поспорил с Уоллисом, может ли 1 считаться числом. Зато до Ферма дошло решение Браункера, с которым Уоллис был согласен. Ученый увидел, что ни Браункер, ни Уоллис его не поняли: он настаивал на получении целых решений, а Браункер выявил метод нахождения дробных результатов.