Страница 28 из 48
Наука усиленно ищет и создает биогенные стимуляторы. Так называют вещества, которые предохраняют животных от заболеваний, способствуют их нормальному развитию и быстрому росту. О них нужен разговор особый. Сейчас же заметим, что биогенные свойства хлореллы несомненны. Внедрение в сельское хозяйство маленькой космической путешественницы будет способствовать успешному выполнению наших земных задач.
Однако вернемся на землю.
Итак, отчего киснут коровы?
Из всех питательных элементов наибольшим спросом животных пользуется азот. Почему? Азот — это белок. А белок — это мясо. На изготовление его идет двадцать с небольшим аминокислот. Девять из них называются незаменимыми. Птицы, свиньи и другие одножелудочные животные не могут их сами синтезировать из кормов. Поэтому их надо добавлять непременно в пищу животным, иначе они погибнут.
У коровы жизнь проще. В ее желудочке есть особый «цех» — рубец. И в этом цехе трудятся химики особой квалификации — микроорганизмы. Они перерабатывают сырые и грубые «полуфабрикаты», поступающие вместе с кормом в желудок, и превращают их в «готовую продукцию». Даже из мочевины — карбамида — они способны синтезировать нужные организму аминокислоты.
Однако естественные корма весьма небогаты азотом. В кукурузе не хватает метионина, в жмыхе подсолнечника — другой аминокислоты, лизина. Вот почему корова с трудом наедается досыта, хотя жует целый день. В погоне за азотом она не отказывается и от карбамида и старается съесть побольше силоса. Кукурузный силос к концу зимы часто прокисает. Чем больше съедает его животное, тем больше «закисает» и оно само. Это сказывается и на здоровье животного и на качестве его мяса.
Вылечить такое животное нетрудно. Достаточно подбросить в корм бактерии, которые уменьшают кислотность среды в его желудке.
Но, как известно, лучше предупредить болезнь, чем бороться с ее последствиями. Значит, надо включить в рацион коровы необходимый белок. Еще острее в нем нуждаются цыплята и поросята.
Проблема белка в животноводстве и птицеводстве — это проблема № 1. Дать животным больше белка — это значит получить больше мяса, а заодно сберечь много кормов.
Решить эту проблему помогают те же чудесные живые «палочки».
Каждый микроорганизм — это крохотная фабрика белка. Она сама вырабатывает аминокислоты, необходимые для построения белковой молекулы. В клетках микрококуса-глютамикуса, например, синтезируются метионин, гомосерин, треонин и лизин. Сколько? Вот самый важный вопрос. Один грамм бактерий производит всего одну сотую грамма лизина. С точки зрения хозяйственника такая «фабрика» нерентабельна. К тому же она выпускает продукцию, которая нам не очень нужна (гомосерин и т. д.).
Как перестроить «технологический процесс» — заставить бактерию «специализироваться» на одном лизине и резко увеличить его производство?
Задача эта была решена коллективом физиологов, генетиков, химиков и физиков, работавших в Институте атомной энергии имени И. В. Курчатова под руководством доктора биологических наук С. И. Алиханяна.
Поразительная жизнестойкость микроорганизмов давно замечена. Некоторые из них могут годами сохраняться в высушенном состоянии, переносить стоградусную жару, морозы до минус 185 градусов, давление в 6 тысяч атмосфер и убийственные дозы радиации — в 100 000 рентген!
Последнее обстоятельство особенно заинтересовало микробиологов.
Что такое селекция? Отбор наиболее жизнеспособных. Радиация убивает все живое. Но, очевидно, есть индивидуумы, которые выдерживают бóльшую дозу, чем их собратья. А раз так, значит, они наиболее жизнеспособны. И атомная радиация (в сочетании с другими методами) стала инструментом селекции.
Из мириад микроорганизмов, подвергшихся облучению, уцелели единицы. Они стали родоначальниками производства «атомного лизина». Новые штаммы микрококуса-глютамикуса в две с половиной тысячи раз продуктивнее обычных! Вместо одной сотой грамма они производят на литр питательного раствора уже 25 граммов!
Пластмассовые пакетики с желтым порошком отправляются из курчатовского института по разным адресам. В Институт питания — для дальнейших исследований и поисков. На Братцевскую птицефабрику — по прямому назначению. Прибавка долей грамма лизина к суточному рациону цыплят ускоряет их рост на 20 процентов.
Но чтобы получать полезные микроорганизмы в промышленных масштабах, их тоже надо чем-то кормить. Академик Имшенецкий считает наиболее перспективным методом выращивание микробов на нефтяных и газообразных углеводородах. Запасы этого «корма» огромны, а стоимость невелика.
Уже открыты особые породы микроорганизмов, вырабатывающие из нефтепродуктов не только белок, содержащий и лизин и метионин, но и витамины роста — рибофлавин и пантотеновую кислоту. Производительность их колоссальна. Бык весом в полтонны, находясь на пастбище, прибавляет в весе полкилограмма (в переводе на чистый белок) в сутки. Масса микробов весом в полтонны синтезирует за это время 1250 килограммов белка!
Способность микроорганизмов к сверхсинтезу может быть прирожденной. Производственные расы пропионовокислых бактерий образуют в 100–200 раз больше витамина B12 (речь о нем пойдет ниже) по сравнению с другими бактериями.
Поиски активных форм микроорганизмов в естественных природных условиях нередко приносят удачу ученому. Но вероятность удачи микробиолога в этом случае можно сравнить с вероятностью удачи селекционера, ищущего среди тысяч сеянцев нужный ему экземпляр. Его может и не оказаться в природе. Не найдя искомого образца, селекционер обращается к гибридизации и другим испытанным методам направленного воздействия на организм. Современные микробиологи все чаще следуют этому примеру.
Химический препарат рождается, как правило, дважды. Сначала — когда его в первый раз синтезируют или открывают. Второй раз — когда находят простой и экономичный способ производства.
Производство спирта из патоки — дело не новое. Известно, что сбраживание сахара производят дрожжи. Но эти «спиртогоны» не очень активны. Они превращают в спирт только один из сахаров, входящих в состав патоки, — рафинозу. Раса «Я» сбраживает рафинозу всего на треть. Другие расы спиртовых дрожжей действуют на другие сахара.
В лаборатории генетики микроорганизмов Института микробиологии был проделан тончайший эксперимент — скрещивание микробов. Его цель — получить гибрид, объединяющий в себе полезные свойства разных рас.
Микроманипулятор с необычайной осторожностью извлек споры (семена) дрожжей и поместил их в микрокапли солодового сусла. Чтобы получить гибрид, нужно было добиться слияния (копуляции) ядер двух различных организмов. 598 пар спор скрестила О. Г. Раевская. И только в двух из 598 опытов произошла копуляция. Образовались всего две гибридные клетки. Шестьдесят седьмая пара дала гибрид «67». Он вел себя точно так же, как и один из родителей, сбраживая всего треть сахара.
Зато гибрид «68» оказался молодцом — он пошел сразу в обоих предков и превращал в спирт все 100 процентов сахара, входящего в патоку!
Активность микроорганизмов можно повысить и другими методами. Микробная клетка легко приспосабливается к переменам и перестраивает свою деятельность применительно к окружающим условиям.
Классические работы К. Нейберга еще полвека назад показали, насколько гибок жизненный механизм живых карликов. Изучая химизм спиртового брожения, Нейберг искажал его. Он добавлял в среду различные вещества, чтобы посмотреть, как среагируют в каждом случае дрожжи. Исследователь открыл пять различных форм брожения. Добавляя в культуру дрожжей сульфит или щелочи, он вдруг обнаружил, что они интенсивно вырабатывают глицерин, который при нормальном брожении образуется в ничтожных количествах как побочный продукт. Это открытие легло в основу промышленного производства глицерина.