Страница 3 из 6
Оба ученых сделали все возможное для устранения всех источников помех для антенны, даже очистили ее от помета, оставленного построившими рядом гнездо голубями, и приклеили алюминиевую фольгу на все стыки с заклепками. Ничто не помогало. Загадка «избыточной температуры антенны» мучила их весь 1964 год, ставя под угрозу радиоастрономический исследовательский проект как таковой. Впрочем, они находили время и для других задач: в декабре 1964 года на собрании Американской ассоциации содействия развитию науки в Вашингтоне Пензиас познакомился с коллегой-радиоастрономом Бернардом Бёрке из Массачусетского технологического института (МИТ). Три месяца спустя в телефонном разговоре Арно рассказал Бернарду, что слышал о проекте команды ученых Принстонского университета (это всего в получасе езды от Кроуфордского холма) под руководством Джима Пиблса и Роберта Дикке[11]. Кажется, этот проект мог пролить свет на проблему «избыточного» излучения. Обсудив это с Вильсоном, Пензиас позвонил Дикке, который как раз был на встрече с коллегами – Пиблсом и двумя младшими сотрудниками, Питером Роллом и Дэвидом Уилкинсоном. Дикке внимательно выслушал Пензиаса и сделал несколько замечаний. Положив трубку, он повернулся к коллегам и сказал: «Ребята, нас обскакали»{2}.
Пензиас и Вильсон не знали, что коллектив Принстона разрабатывает идею о том, что Вселенная расширялась из исходного горячего и плотного состояния и что она наполнена холодным фоновым излучением – радиошумом микроволнового диапазона. На следующий же день принстонцы отправились за 50 километров на встречу с Пензиасом и Вильсоном для проверки их радиотелескопа. Они моментально поверили, что исследователи Лаборатории Белла уловили именно это реликтовое излучение и что «избыточная» температура никак не связана с антенной, а представляет собой температуру самой Вселенной. Хотя сами Пензиас и Вильсон сомневались в этом и в первую очередь потому, что больше верили в концепцию стационарной Вселенной, утверждавшую, что по своей сути Вселенная вечна и неизменна. Однако они с облегчением восприняли то, что обнаруженное ими явление может быть научно объяснено.
Как же именно оно было объяснено? Совсем коротко идею Дикке можно назвать «Большой взрыв, но не такой, каким мы его знаем». Родившийся в 1916 году Дикке был на поколение старше Пензиаса, Вильсона и своих ассистентов из Принстона. Во время Второй мировой он работал над проблемами радаров и создал так называемый радиометр Дикке для анализа именно того типа микроволнового излучения, которое позднее обнаружили Пензиас и Вильсон. И уже в 1946 году, изучая с помощью этого радиометра излучение атмосферы Земли, выяснил, что любой «шум», поступающий вертикально сверху (то есть из космоса), соответствует температуре до 20 К. Впрочем, в тот период он не помышлял о космологии и к 1965 году уже совершенно забыл об этих измерениях. Дикке вновь вернулся к вопросу фонового излучения, столкнувшись с проблемой происхождения химических элементов; эта тема постоянно поднималась в различных исследованиях, описываемых в этой книге.
К середине 1940-х годов стало ясно (я подробнее расскажу об этом в главе 1), что большую часть видимой материи во Вселенной составляют водород и гелий. Яркие звезды и галактики состоят из водорода примерно на 75 % и из гелия примерно на 24 %. Оставшийся процент – это все остальное, включая состав планеты Земля и наших с вами организмов. Водород – самый простой элемент: каждый его атом состоит всего из одного протона и одного электрона. Исходя из того, что это базовый строительный блок материи, астрофизики не могли понять, как же сформировались прочие элементы.
Первым ученым, который применил космологические идеи в попытке понять происхождение химических элементов, стал Георгий Гамов – физик – эмигрант из СССР, в то время работавший в Университете Джорджа Вашингтона в столице США. Получив подтверждение того, что Вселенная непрерывно расширяется – тогда это открытие только было сделано (подробнее см. главу 6), – Гамов первым всецело поддержал идею, что она образовалась из исходного плотного и горячего состояния под влиянием того, что мы сегодня называем Большим взрывом. Он предположил, что изначально существовал горячий, плотный газ, состоящий из нейтронов. Эти нестабильные незаряженные частицы легко распадаются на один протон и один электрон, образуя атомы водорода. Если перед Большим взрывом температура и плотность были достаточно высокими, протоны (ядра атомов водорода) могли объединяться попарно (этот процесс называется слиянием ядер), образуя вместо водорода дейтерий (тяжелый водород). Дальнейшие столкновения сформировали ядра гелия, состоящие из двух протонов и двух нейтронов. Гамов поручил аспиранту Ральфу Альферу[12] рассчитать, насколько эффективным мог быть этот процесс, и совместно с ним выяснил, что, хотя получить таким образом гелий действительно несложно, более тяжелые элементы просто не успели бы сформироваться до того, как расширяющаяся Вселенная остыла бы до прекращения процесса слияния ядер. Гамова это не смутило. Никогда не сомневавшийся в своих силах ученый заявил, что его теория объясняет происхождение 99 % видимой Вселенной, так что остальное – всего лишь детали, которые можно оставить для выяснения другим исследователям.
Проведенные расчеты легли в основу докторской диссертации Ральфа Альфера и были опубликованы в журнале Physical Review[13] в 1948 году. Неуемный шутник Георгий Гамов решил включить в число авторов своего друга Ганса Бете[14], поскольку ряд «Альфер, Бете, Гамов» напоминал начало греческого алфавита: альфа, бета, гамма. Альфер был огорчен тем, что ему досталась лишь треть признания за эту важную работу, но повлиять на решение руководителя не мог и утешался тем, что его имя стояло первым. Эту работу и сегодня называют «исследование альфа-бета-гамма». Оно стало ключевым шагом в космологии уже потому, что впервые доказало возможность проведения научных расчетов в рамках теории Большого взрыва. Однако вопрос происхождения всех элементов, помимо водорода и гелия, оставался без ответа.
Неясность с происхождением элементов (ядерным синтезом) стала одной из причин, по которой в том же 1948 году Германом Бонди, Томми Голдом[15] и Фредом Хойлом была выдвинута альтернатива Большому взрыву – теория стационарной Вселенной. В основе их концепции лежала идея, что хотя Вселенная и расширяется (скопления звезд, называемые галактиками, отходят дальше друг от друга), она не образовалась в конкретный момент времени из некоего горячего и плотного состояния, а всегда имела приблизительно нынешний вид. По мере расширения в промежутках между галактиками возникает новая материя в виде атомов водорода, которая затем включается в новые звезды и галактики. Далее внутри звезд происходит ядерный синтез. Этот процесс представляется намного более медленным, чем ядерный синтез, описанный Гамовым и его коллегами в рамках теории Большого взрыва, но, поскольку теория стационарной Вселенной предполагает, что она существует неограниченный период времени, это не проблема. Как мы увидим в дальнейшем, Хойл сделал особенно значительный вклад в разработку понимания ядерного синтеза внутри звезд, и некоторое время в конце 1950-х годов ему удавалось отбрасывать теорию Большого взрыва как ненужную (интересно, что он случайно придумал сам термин «Большой взрыв», рассказывая о нем в радиопередаче ВВС). Однако Хойл обнаружил, что, хотя ядерный синтез внутри звезд действительно объяснял возникновение пресловутого 1 % материи, объяснить происхождение всего гелия во Вселенной с его помощью было невозможно. Для интерпретации всех элементов в видимой Вселенной необходимо было использовать еще и идею ядерного синтеза согласно теории Большого взрыва… Однако мы забегаем вперед.
11
Роберт Дикке (1916–1997) – американский физик, член Национальной академии наук США с 1967 года; известен своими работами в области астрофизики, атомной физики, космологии и гравитации. Прим. ред.
2
См. Маркус Чоун, Afterglow of Creation.
12
Ральф Альфер (1921–2007) – американский космолог; наиболее известен новаторской работой начала 1950-х гг. по теории Большого взрыва, в том числе большого нуклеосинтеза взрыва и предсказаний космического микроволнового фонового излучения. Прим. ред.
13
Американский научный журнал, публикующий аспекты теоретических и экспериментальных исследований в области физики. Издается Американским физическим обществом с 1913 года. Прим. ред.
14
Ганс Бете (1906–2005) – американский астрофизик, лауреат Нобелевской премии по физике (1967). Прим. ред.
15
Сэр Герман Бонди (1919–2005) – англо-австрийский математик и космолог. Томас Голд (1920–2004) – астрофизик австрийского происхождения, профессор астрономии Корнелльского университета, член американской Национальной академии наук, а также Лондонского королевского общества. Прим. ред.