Добавить в цитаты Настройки чтения

Страница 5 из 10



Написать алгоритм непросто: есть очень много ловушек, и ни в чем нельзя быть уверенным. Интуитивные предположения вполне могут оказаться ошибочными, и тогда придется искать другой подход. Затем алгоритм надо выразить на понятном компьютеру языке, например Java или Python, и с этого момента алгоритм начнет называться программой. Потом программу надо отладить: найти все до единой ошибки и исправить их, пока компьютер не начнет выполнять ее без запинки. Но когда у вас наконец появится программа, которая умеет делает то, что вам нужно, вы получите все козыри. Компьютер станет послушно выполнять ваши задания миллионы раз со сверхвысокой скоростью. Созданной вами программой сможет пользоваться любой человек в мире. Она даже сделает вас миллиардером, если решенная проблема достаточно важна. Программист – человек, пишущий алгоритмы и кодирующий их, – маленький бог, создающий вселенные по своему желанию. Можно даже сказать, что сам Господь тоже был программистом, ведь в Книге Бытия он творил с помощью слов, а не руками. Речения стали мирами. Сегодня, сидя в кресле перед ноутбуком, вы тоже можете почувствовать себя богом: нарисуйте в воображении Вселенную и сделайте ее реальной. Законы физики соблюдать необязательно.

Со временем информатики начинают опираться на уже проделанную работу и придумывают алгоритмы для все новых процессов. Одни алгоритмы соединяются с другими, чтобы использовать результаты третьих, производя, в свою очередь, еще больше алгоритмов. Каждую секунду миллиарды раз переключаются миллиарды транзисторов в миллиардах компьютеров. Алгоритмы образуют экосистему нового типа – непрерывно растущую и сопоставимую по богатству лишь с самой жизнью.

Однако, как это всегда бывает, в райском саду обитает змей – Монстр Сложности. У него, как у лернейской гидры, много голов. Одна из них – пространственная: количество битов информации, которое алгоритм должен хранить в памяти компьютера. Если алгоритму требуется больше памяти, чем есть в наличии, он бесполезен, и его приходится отбрасывать. У пространственной сложности есть злая сестрица: временная сложность. Сколько будет длиться выполнение алгоритма, то есть сколько раз нужно использовать транзисторы, прежде чем алгоритм даст желаемый результат? Если мы не можем столько ждать, алгоритм снова оказывается бесполезным. Но самая пугающая голова Монстра Сложности – сложность человеческая. Когда алгоритм становится слишком запутанным и непонятным для нашего скромного разума, а взаимодействия между его элементами – слишком многочисленными и обширными, в него начинают вкрадываться ошибки. Человек не в состоянии их отыскать и исправить, поэтому алгоритм не делает то, что от него требуется. Даже если каким-то образом заставить его работать, он окажется неоправданно сложным для пользователя, будет плохо взаимодействовать с другими алгоритмами и порождать все больше проблем.

Специалисты-информатики сражаются с Монстром Сложности каждый день. Когда они проигрывают, сложность прорывается в нашу жизнь. Вы, наверное, и сами замечали, как много было проиграно битв. Тем не менее башня алгоритмов продолжает расти, хотя строить ее все труднее: каждое новое поколение алгоритмов приходится возводить на вершине предшественников, их сложность суммируется. Башня растет и растет, алгоритмы опутывают весь мир, но конструкция становится все более шаткой – как карточный домик, который только и ждет толчка. Мизерная ошибка в алгоритме – и ракета, стоившая миллиард долларов, взрывается на старте, или миллионы людей остаются без электричества. Непредвиденное взаимодействие алгоритмов – и рушится фондовый рынок.

Если программисты – маленькие боги, то Монстр Сложности – его величество Сатана. И мало-помалу он выигрывает войну.

Должен быть способ лучше.

Познакомимся с обучающимся алгоритмом

У любого алгоритма есть вход и выход: данные поступают в компьютер, алгоритм делает с ними то, что должен, и выдает результат. Машинное обучение переворачивает все задом наперед: имея в своем распоряжении данные и желаемый результат, оно выдает алгоритм, превращающий одно в другое. Обучающиеся алгоритмы – те, что создают другие алгоритмы, обученные на основе данных. С помощью машинного обучения компьютеры пишут себе программы, и нам не надо этим заниматься.



Здорово, правда?

Компьютеры сами пишут для себя программы. Эта мысль потрясает настолько, что даже страшно: если компьютеры начнут программировать сами себя, сможем ли мы их контролировать? Оказывается – и мы в этом убедимся, – людям вполне по силам с ними совладать. Но есть и другое возражение – все это слишком хорошо, чтобы быть правдой. Разве для написания алгоритмов не нужны ум, творческая жилка, умение решать проблемы – все те качества, которых у компьютеров просто нет? Чем машинное обучение отличается от магии? Все это правда: сегодня мы умеем писать много программ, которым компьютер научиться не может. Но еще удивительнее то, что и компьютеры могут научиться программам, которые не в состоянии написать человек. Мы умеем водить машину или читать написанный от руки текст, но эти навыки у нас подсознательные: рассказать компьютеру, как это делать, не получится. Однако если дать обучающемуся алгоритму достаточное количество примеров каждого из этих действий, он с легкостью во всем разберется и без нашей помощи, и тогда можно будет развязать ему руки. Именно так машины научились читать почтовые индексы, и именно поэтому на дорогах скоро появятся автомобили без водителей.

Мощь машинного обучения, наверное, лучше всего показать, сравнив технологию с сельским хозяйством. В индустриальном обществе товары делают на заводах, а это значит, что инженерам надо точно определить, как именно их собирать, как изготавливать все элементы и так далее, вплоть до сырья. Это требует больших усилий. Самые сложные устройства, которые человеку удалось изобрести, – компьютеры, и их разработка, производство и написание для них программ требуют колоссального труда. Но есть другой, намного более древний способ получить некоторые необходимые нам вещи: предоставить их изготовление самой природе. Посадить семечко, полить его, добавить удобрений, а потом сорвать спелый плод. Может ли технология выглядеть примерно так же? Может! Именно это сулит нам машинное обучение. Обучающиеся алгоритмы – как семена, почва – это данные, а обученные программы – это наша жатва. Эксперт по машинному обучению похож на крестьянина, сеющего, поливающего и удобряющего землю. Он присматривает за здоровьем растущего урожая, но в целом не вмешивается.

Если посмотреть на машинное обучение под этим углом, сразу бросаются в глаза два момента. Во-первых, чем больше у нас данных, тем больше мы можем узнать. Нет данных? Тогда и учиться нечему. Большой объем информации? Огромное поле для обучения. Вот почему машинное обучение заявляет о себе везде, где появляются экспоненциально растущие горы данных. Если бы в магазине продавали машинное обучение быстрого приготовления, на коробке было бы написано: «Просто добавь данных».

Второе наблюдение заключается в том, что машинное обучение – это меч-кладенец, которым можно обезглавить Монстра Сложности. Если дать обучающей программе длиной всего пару сотен строк достаточно данных, она не только с легкостью сгенерирует программу из миллионов строк кода, но и сможет делать это вновь и вновь для разных проблем. Уменьшение сложности для программиста просто феноменальное. Конечно, как и гидра, Монстр Сложности будет отращивать все новые и новые головы, но они окажутся меньше и вырастут не сразу, так что у нас все равно будет большое преимущество.

Машинное обучение можно представить себе как вывернутое наизнанку программирование, точно так же как квадратный корень противоположен возведению во вторую степень, а интегрирование обратно дифференцированию. Если можно спросить, квадрат какого числа равен 16 или производной какой функции является x + 1, уместен и вопрос: «Какой алгоритм даст такой результат?» Вскоре мы увидим, как превратить оба наблюдения в конкретные обучающиеся алгоритмы.