Добавить в цитаты Настройки чтения

Страница 30 из 33

Диаграмма эволюции Вселенной, начиная с Большого взрыва. Временная асимметрия видна очень четко. Это изображение, предложенное НАСА, иллюстрирует знания о Вселенной, полученные благодаря спутнику WMAP, который измерил остаточное излучение Большого взрыва с беспрецедентной точностью.

Сегодня проблема временной асимметрии остается, хотя было осуществлено несколько немного умозрительных попыток решить ее. Теория струн, главный кандидат сегодня на замещение устаревшей стандартной модели, кажется, усугубляет ситуацию, а не улучшает ее.

Спустя некоторое время после смерти Больцмана была предложена теория Большого взрыва, которая утверждала, что Вселенная возникла на этапе большой плотности и температуры и быстро расширилась от того состояния до современных размеров. Идея Больцмана о Вселенной в состоянии тепловой смерти была оставлена в пользу современной космологии, в которой космос рассматривается как динамическая сущность, прошедшая через многие фазы и направляющаяся, согласно последним экспериментальным результатам, также к тепловой смерти из-за ускоренного расширения.

Вселенная Голда — это космологическая модель, предложенная Томасом Голдом, в которой энтропия начинает уменьшаться, как только Вселенная достигает максимального размера. Преимущество этой модели заключалось в симметричности с точки зрения времени, таким образом исключается необходимость объяснять низкую энтропию в прошлом. Однако не было ясно, какой механизм способен заставить материю вернуться в состояние более низкой энтропии, и поэтому вселенная Голда не входит в состав космологии, принятой сегодня. Как показано на рисунке, для вселенной Голда характерна идеальная временная симметрия.

Однако теория Большого взрыва не решала проблему энтропии. С учетом симметрии лежащих в основе законов, все еще существовала необходимость объяснить, почему на одном временном конце Вселенная находилась в состоянии чрезвычайно низкой вероятности (Большой взрыв), в то время как на другом она была в состоянии очень высокой вероятности. В качестве ответа на эту проблему Томас Голд (1920-2004) предложил модель, в которой Вселенная расширяется от изначального Большого взрыва, пока не доходит до максимального размера, после которого начинает сжиматься, пока не доходит до Большого сжатия (Big Crunch), где вся материя сокращается до одной точки.

Работа сэра Роджера Пенроуза, так же как и работа Стивена Хокинга (р. 1942), помогла заложить основы общей теории относительности Эйнштейна, особенно в том, что касается знания о черных дырах и идеи, что Вселенная должна была начаться с состояния, в котором плотность материи становится бесконечной и законы физики перестают действовать. Пенроуз также разработал теорию твисторов, альтернативный способ представления релятивистского пространства-времени, который облегчает многие вычисления. Он также изобрел невозможные геометрические формы, такие как треугольник Пенроуза, который вдохновил художника Маурица Корнелиса Эшера (1898-1972) на создание знаменитых литографий. Кроме физики и математики, Пенроуз совершил значительное вторжение в область философии разума. Пользуясь теоремами математической логики, он утверждает, что человеческий разум невозможно смоделировать с помощью компьютера.

Роджер Пенроуз (р. 1931) предложил другое решение, в котором Вселенная в своем конечном состоянии производит новый Большой взрыв. В его предложении к концу жизни космоса материя настолько разжижена, что ее распределение можно считать однородным, то есть одинаковым во всех положениях и направлениях пространства. Из-за однородности становится возможным изменение масштаба, что означает переоценку размеров, так что огромное расстояние точно соответствует крошечному. Итак, Вселенная в состоянии тепловой смерти максимального размера и энтропии точно соответствует Большому взрыву, где как размер, так и энтропия минимальны. Таким образом, космос будет проходить через множество циклов, в которых расширение порождает следующее расширение, без начала и конца.

Модель Пенроуза повлекла за собой множество неподтвержденных прогнозов, таких как излучение микроволн — электромагнитного излучения, которое пропитывает всю Вселенную. На данный момент его предложение представляется удачной попыткой, но кажется, что оно не вытеснит доминирующую теорию.





РИС. 1

РИС. 2

Другое предположение, призванное исключить проблему временной асимметрии, было высказано Шоном Кэрроллом (р. 1966) в 2004 году вместе с тогда еще аспиранткой Дженнифер Чен. Кэрролл предположил, что Большой взрыв — это всего лишь результат статистической флуктуации Вселенной в состоянии тепловой смерти. Однако вместо того чтобы рассматривать спонтанное создание всей Вселенной, как в модели Больцмана, он сосредоточился на появлении некой особенности, способной породить космос. Из-за того что размер этой особенности намного меньше размера больцмановского мозга, она намного более вероятна, чем последний, так что проблемы больцмановских мозгов не возникало. Загадка о том, почему энтропия так низка в прошлом, также была решена напрямую: несмотря на то что Вселенная, из которой она возникает, имеет очень высокую энтропию, энтропия области, в которой случится следующий Большой взрыв, чрезвычайно мала из-за ее размера. Итак, общая энтропия продолжит увеличиваться (с учетом "материнской" вселенной и "дочерней" вселенной), но, несмотря на это, обитателям "дочерней" вселенной покажется, что начальное состояние будет иметь очень низкую энтропию (см. рисунок 1).

Модель Кэрролла считается сильно умозрительной даже им самим, и нужно будет дождаться новых достижений в космологии и физике частиц, чтобы узнать, верно ли его предположение. Однако все эти попытки показывают, что ящик Пандоры, открытый Больцманом, все еще распахнут и ждет, пока кто-нибудь даст окончательное объяснение временной асимметрии. На данный момент физики продолжают пользоваться понятийным аппаратом Больцмана в его варианте, и он продолжает давать адекватные ответы на все вызовы, которые ему бросают.

Хотя атомизм казался умирающей теорией в конце XIX века, в то время как энергетика побеждала в академических кругах, начало XX века все изменило. Значительная часть ответственности за этот поворот лежит на Альберте Эйнштейне, который в одной из своих знаменитых статей 1905 года объяснил "броуновское движение" на основе атомной гипотезы.

Броуновское движение было открыто биологом Робертом Броуном (1773-1858), когда тот наблюдал в микроскоп за движением пыльцевых зерен в жидкости. Броун понял, что они следуют произвольной траектории, и нет никакого признака того, что могло бы ими двигать. На рисунке 2 показано броуновское движение частицы, смоделированное с помощью компьютера.

Для Эйнштейна объяснение этого явления было очевидно. Если предположить, что жидкость состоит из молекул, движущихся на большой скорости в произвольных направлениях, казалось ясным, что пыльцевое зерно будет подвергаться непредсказуемым воздействиям, которые будут бросать его в разных направлениях. Тогда тип траектории должен зависеть от частоты воздействий и средней скорости и массы частиц жидкости. Прогнозы Эйнштейна были подтверждены в 1913 году физиком-экспериментатором Жаном-Батистом Перреном (1870-1942), за это открытие он получил Нобелевскую премию по физике в 1926 году.