Добавить в цитаты Настройки чтения

Страница 19 из 34

По оси абсцисс — номер эксперимента, по оси ординат — интенсивность ультразвука, Вт/см2·103. Светлый кружок — ощущение холода, темный — тепла, светлый кружок с точкой внутри — ощущение холода, сменяющееся ощущением тепла. Ультразвук частотой 2.67 МГц, одиночные прямоугольные импульсы длительностью 10 мс.

Теперь обратимся к данным, полученным с помощью ультразвука. Испытуемый с найденными и помеченными на коже тепловыми чувствительными точками погружает руку в резервуар с водой. Вскоре наступает состояние адаптации, при котором человек перестает ощущать температуру воды. Начинаем воздействие на чувствительные точки стимулами фокусированного ультразвука длительностью приблизительно от 1 до 10 мс. Оказывается, что если температура воды ниже 30 °С, на какую бы чувствительную точку ни действовал ультразвук, возникает, как правило, ощущение холода. Если температура воды выше 35 °С, ультразвуковое воздействие в те же точки вызывает только ощущение тепла (рис. 17). Полученные результаты противоречат концепции тепловых и холодовых специфических чувствительных точек и рецепторов.

Для большей ясности необходимо было установить действующий фактор ультразвукового стимула, т. е. непосредственную причину возникновения ощущения при ультразвуковой стимуляции. Казалось бы, наиболее вероятной причиной тепловых ощущений является выделение тепла в фокальной области. Но отчего же тогда бывают ощущения холода? Известен опыт, описанный впервые немецким ученым Е. Вебером. Каждый желающий легко может его воспроизвести на себе. Опустите руки в сосуды с водой разной температуры. Подождите до тех пор, пока перестанете ощущать температуру воды, адаптируетесь. Затем перенесите обе руки в сосуд с водой промежуточной температуры. Для руки, бывшей в более холодной воде, вода в сосуде покажется горячей, для другой, бывшей в более теплой воде, теперь вода окажется холодной. Оценка температуры, как показывает этот опыт, весьма субъективна. Может быть, в опыте с ультразвуком на руке, погруженной в воду с температурой ниже 30°С, выделение тепла тем не менее вызывает субъективно ощущение холода? Так бывает в естественных условиях, например, если прикоснуться к охлажденной руке маленьким горячим предметом. В первый момент вместо тепла возникает ощущение холода. И все же такие объяснения не подходят. Дело в том, что температурные ощущения прямо не зависят от частоты ультразвука, в то время как выделение тепла увеличивается с повышением частоты. Пороги температурных ощущений оказались, как и пороги тактильных, зависимы от амплитуды смещения среды в фокальной области. Стоит достигнуть пороговой амплитуды смещения, как независимо от частоты ультразвука появляется температурное ощущение. Действующим фактором ультразвука опять оказался механический. Для тактильных ощущений выявление механического фактора при ультразвуковой стимуляции казалось вполне естественным: именно механически стимулируются тактильные рецепторы в естественных условиях.

Выявлено, однако, что и в температурной рецепции происходит нечто подобное. Изменения температуры кожи вызывают деформацию тканевых белков, окружающих рецепторные структуры, в первую очередь коллагена. Деформация и является механическим фактором, активирующим температурночувствительные рецепторные структуры. Если дело обстоит именно так, то почему в естественных условиях механический стимул, допустим вибрация или нажатие на кожу, не вызывает температурных ощущений? Вероятно, причина в тех же белках кожи. Они защищают температурные рецепторные структуры от механического воздействия, но до тех пор, пока сами не деформируются под влиянием температуры. Попробуем проверить предположение о защитной роли белков. У человека есть участки, где таких белков очень мало. Это, например, кожа верхнего века и роговая оболочка глаза. Проведем очень простой опыт. Заточим деревянную палочку, как затачивают карандаш, закруглим кончик, чтобы не поцарапать кожу. В зимний морозный день прикоснемся кончиком палочки к коже верхнего века. В ответ на это механическое воздействие появится ощущение холода. Если тот же опыт повторить в жаркий безветренный летний день или, например, в горячем отделении бани, прикосновение палочкой вызовет ощущение тепла. Получить ощущение тепла достаточно отчетливо удается не всем людям из-за индивидуальных особенностей кровоснабжения века. Но вот на поверхности роговицы ощущения холода и тепла в тех же условиях выявляются достаточно ярко. Только прикасаться к роговице палочкой не стоит: легко вызвать боль. Лучше воспользоваться тонким волоском или ниткой. Указанный опыт фактически воспроизводит ситуацию и результаты описанных экспериментов с фокусированным ультразвуком Ультразвук в отличие от естественного механического стимула обладает способностью преодолевать защитный барьер белков, поэтому явления, аналогичные вышеописанным, возникают на всех участках кожи, чувствительных к температуре.

Исследования с применением фокусированного ультразвука, дополненные простыми опытами с механической стимуляцией, приводят к нескольким выводам, важным для понимания температурной рецепции. Температурные ощущения в естественных условиях и под действием ультразвука вызываются в конечном счете механической стимуляцией рецепторного аппарата. Имеет ли все же какое-нибудь значение выделение тепла в фокальной области? Отмечено, что с увеличением количества тепла уменьшается амплитуда смещения среды в фокальной области, необходимая для появления порогового температурного ощущения. Это показали опыты, в которых определялись пороги температурных ощущений, вызываемых стимулами ультразвука разной длительности. Известно, что с увеличением длительности ультразвукового стимула увеличивается выделяемое количество тепла. При этом уменьшаются пороги температурных ощущений, рассчитанные по величине амплитуды смещения среды в фокальной области ультразвукового излучателя. Действие тепла на белки, окружающие рецепторную структуру, и механического фактора на саму структуру в конечном счете складываются.

Ощущения тепла и холода можно вызвать действием ультразвука на одни и те же чувствительные точки, при этом не имеет значения, где они находятся: на коже кисти, предплечья, плеча. Уже отмечалось, что в коже кисти рецепторные структуры расположены плотно, на предплечье и плече — реже. Между ними может быть расстояние больше 1 мм. При этом ультразвук в фокальной области будет активировать лишь одну структуру. Тем не менее в зависимости от температуры воды ультразвуковое воздействие вызывает ощущение тепла или холода. В результате делается следующий вывод: в коже имеются температурночувствительные точки, а не тепловые и холодовые, как предполагалось раньше. Этим точкам соответствуют общие для ощущений тепла и холода температурно-рецепторные структуры.





При расположении фокальной области излучателя под кожей ультразвуком также можно вызвать температурные ощущения. Однако человек всегда проецирует их на кожу Следовательно, рецепторный температурночувствительный аппарат человека расположен именно в коже, в глубже лежащих тканях его нет. Этот вывод хорошо согласуется с представлениями о роли сократительных белков, окружающих температурные рецепторные структуры. Сократительные белки имеются главным образом в коже.

Результаты исследования температурной чувствительности с помощью фокусированного ультразвука создали предпосылки для обоснования гипотезы температурной рецепции, которая позволяет не только объединить накопившийся экспериментальный материал, но и наметить пути будущих исследований в этой области. Эта гипотеза подробно изложена в работе Е. М. Цирульникова, приведенной в литературном указателе.

Боль

С полным основанием боль можно назвать сторожевым ощущением. Ее появление свидетельствует о неблагополучии, об опасности, подстерегающей организм извне или изнутри. Болью также называют неприятно окрашенные эмоции, иногда говорят о душевной боли. Отсутствие других ощущений, например зрения или слуха, может быть в какой-то мере скомпенсировано. При отсутствии боли возникает реальная опасность для жизни. Допустим, человек обжигает руку. Не чувствуя боли, он не отдергивает руку от источника поражения — довольно легко представить себе результат. Но вот боль возникла, ее причина ясна и устранена, а мучительное ощущение не стихает. Оборотная сторона, медали: боль выступает как несостоятельный сторож. Опасность обнаружена, даже устранена, а сторож продолжает сигналить. С такой болью приходится бороться, и борьба выступает как одна из важнейших задач медицины. А вот еще ситуация: бывает нужно заранее усыпить бдительность сторожа, не дать появиться боли, когда ее сигнальная роль для нас не имеет значения, например при хирургической операции. Над обезболиванием работает целая область медицины — анестезиология.