Добавить в цитаты Настройки чтения

Страница 13 из 21



Но что получится, если интенсивность светового пучка очень слаба и только один фотон в каждый момент времени проходит через пластину? Естественно предположить, что фотон пройдет через одну из щелей, но не через обе сразу. Мы можем провести эксперимент, посылая по одному фотону через пластину. Согласно Эйнштейну, интерференционной картины не будет, потому что фотон как частица должен будет «выбрать» одну открытую щель или другую, и, таким образом, не будет ни подавления, ни усиления, как в случае со световыми волнами. Эйнштейн предполагал, что полосы возникают только в том случае, когда множество фотонов единовременно проникают через щели плас тины и, взаимодействуя друг с другом, образуют интерференционную картину.

Сегодня мы знаем, что интерференционная картина возникает даже тогда, когда всего один фотон в секунду проходит через пластину. Если мы подождем достаточно долго и посмотрим на экран, то увидим темные и светлые полосы. Современное объяснение состоит в том, что интерференционная картина возникает только в том случае, если не существует информации – нигде во Вселенной, – через какую щель проникает частица (утверждение, что частица проникает через обе щели, следует воспринимать скептически). Пусть Эйнштейн и ошибался в данном случае, но его идея энергетических квантов света, то есть фотонов, имела большое будущее.

В том же поразительном 1905 году, в котором Эйнштейн также опубликовал специальную теорию относительности, в письме своему другу Конраду Хабихту он назвал публикацию о фотонах «революционной». Насколько известно, это единственная его работа, которую он когда-либо так называл, и неудивительно, что в 1921 году она принесла ему Нобелевскую премию. О том, что всего лишь несколькими годами ранее его теории казались совсем неочевидными, свидетельствует знаменитое письмо, подписанное Планком, Вальтером Нернстом, Генрихом Рубенсом и Эмилем Варбургом, которые предложили принять Эйнштейна в члены Прусской академии наук в 1913 году. Они писали: «В своих размышлениях временами он попадает мимо мишени, как, например, в гипотезе о квантах света, но это не следует ставить ему в вину, так как без периодического риска, даже в наиболее точных науках, не может быть сделано ни одно настоящее открытие». Глубокое, элегантное и красивое объяснение энтропии излучения с помощью квантов света, предложенное Эйнштейном в 1905 году, – вес кое основание целесообразности свободного полета мысли.

О малом

Джереми Бернштейн

Заслуженный профессор физики Технологического института Стивенса, бывший сотрудник журнала New Yorker; автор книги Quantum LeapsКвантовые скачки»)

Отвечая на вопрос Edge, трудно не поддаться искушению и не привести в пример что-нибудь «большое», наподобие теории относительности Эйнштейна. Вместо этого я обращусь к «малому». Когда Планк в начале XX столетия предложил свой квант действия, он понимал, что это открывает новый ряд естественных констант. Так, согласно Планку, время Планка представляет собой квадратный корень из отношения произведения постоянной Планка и гравитационной постоянной к скорости света в пятой степени. Это мельчайшая единица времени, но что она описывает, о чем говорит? Проблема состоит в том, что все физические константы одинаковы как для покоящегося, так и для движущегося наблюдателя. Но ведь время не таково. Я изложил эту проблему своим коллегам, и Фримен Дайсон нашел блестящее решение. Он попытался придумать часы, которые измерили бы эту единицу времени, и с помощью квантовой неопределенности показал, что такое измерение невозможно. Время Планка – не время, или, можно сказать, – оно вне времени.

Почему наш мир познаваем?

Андрей Линде



Создатель теории вечной хаотической инфляции, профессор физики Стэнфордского университета, лауреат премии Мильнера

«Самое непостижимое в мире то, что он постижим», – говорил Альберт Эйнштейн. Сходную мысль высказывал Юджин Вигнер, отмечая, что непомерно высокая эффективность математики – «чудесный дар, который мы не понимаем и которого не заслуживаем».

Почему мы живем в познаваемой Вселенной, подчиняющейся определенным законам, которые можем использовать, чтобы прогнозировать наше будущее?

Конечно, всегда можно сказать, что «так все устроено» – Бог создал Вселенную достаточно простой, чтобы мы могли в ней разобраться. Но мы ведь так легко не сдадимся? Давайте зададим другие подобные вопросы. Почему наша Вселенная такая огромная? Почему параллельные линии не пересекаются? Почему различные части Вселенной столь похожи? Долгое время такие вопросы казались слишком метафизическими, чтобы воспринимать их всерьез. Теперь мы знаем, что инфляционная космология может предложить на них ответы.

Дабы понять суть, рассмотрим пример непознаваемой Вселенной, где математика неэффективна. Представьте себе Вселенную в состоянии так называемой плотности Планка: r ~ 1094 г/см³, что на 94 порядка больше, чем плотность воды. В соответствии с квантовой теорией гравитации, квантовые флуктуации пространства-времени в этих условиях столь велики, что любая измерительная шкала изгибается, сжимается и изменяется в непредсказуемом направлении – быстрее, чем вы сумеете измерить с ее помощью расстояние. Часы деформируются раньше, чем вы успеете узнать время. Все записи предшествующий событий стираются, так что вы ничего не сможете запомнить и записать, чтобы предсказать будущее. Такая Вселенная непостижима для тех, кто в ней живет (если жизнь там вообще возможна), а законы математики в ней не работают.

Если пример Вселенной с высокой плотностью выглядит несколько экстремальным, давайте рассмотрим другие варианты. Существует три основных типа Вселенных: закрытая, открытая и плоская. Типичная закрытая Вселенная, возникшая в результате Большого взрыва, в течение 10−43 секунды сожмется в состояние плотности Планка, если только в самом начале она не обладает огромными размерами. Типичная открытая Вселенная, возникшая в результате Большого взрыва, будет увеличиваться с такой скоростью, что образование галактик станет невозможным, а наши тела (если нам не повезет, и мы родимся) будут незамедлительно разорваны на куски. Никто не сумеет жить во Вселенной, а тем более познавать ее в обоих этих случаях. Мы можем радоваться жизни в плоской (или почти плоской) Вселенной (что мы сейчас и делаем), но чтобы не случилось что-нибудь особенное (инфляция, см. ниже), необходима тонкая настройка исходных данных с невероятной точностью 10−60 в момент Большого взрыва.

Недавние разработки теории струн – наиболее популярной кандидатуры на «всеобщую теорию» – обнаружили еще большее разнообразие возможных, но непознаваемых Вселенных. Если мы допускаем, что теория струн способна описать нашу Вселенную, то означает ли это, что мы знаем все об окружающем мире? Рассмотрим более простой пример: вода может быть жидкой, замерзшей или парообразной. Химически это одно и то же вещество. Но дельфины могут существовать и по-своему познавать Вселенную, только если они окружены жидкой водой. В этом примере у нас лишь три варианта выбора: жидкость, лед и пар.

В соответствии с последними выводами теории струн у нас может быть 10500 (или более) вариантов состояния окружающего мира. Все эти возможности следуют из той самой основополагающей теории. Однако каждый из вариантов Вселенной будет выглядеть так, как будто он управляется разными законами физики, а их общие свойства станут незаметны. Поскольку существует такое великое множество вариантов, некоторые из них, надо надеяться, описывают Вселенную, в которой мы живем. Но большинство представляют собой вселенные, в которых мы не смогли бы существовать, создавать измерительные приборы, записывать события или использовать законы математики и физики, чтобы строить предположения относительно будущего.