Добавить в цитаты Настройки чтения

Страница 104 из 111

- Ни-ни-ни в коем случае, - подает голос высокий итальянец с глубокими шрамами на подбородке, одетый по моде шестнадцатого столетия. - Хотя числа в этом треугольнике я ра-ра-расположил так, что правильнее было бы называть его прямоугольником.

- Какое, однако, удивительное совпадение! - не выдерживает Фило. "Тарталья" - по-итальянски "заика", а этот уважаемый мэтр и впрямь заикается.

- Ничего удивительного, - поясняет Асмодей. - Прозвище Тартальи сей даровитый синьор получил как раз за свое заикание, которое началось у него после сильного ранения в нижнюю челюсть.

- А настоящая его фамилия как? - продолжает приставать любопытный Фило.

Но Асмодей лишь досадливо пожимает плечами. Не всегда ж ему знать то, чего не знает никто! И вообще, дадут ему наконец смотреть передачу?

- Однако, до-до-дорогие мэтры, - продолжает Тарталья, - хочу обратить ваше внимание на то, что арифметические треугольники возникали в разные времена и в разных странах совершенно самостоятельно. Свой я, во-во-во всяком случае, придумал сам.

- И я тоже, достопочтенный мэтр Тарталья, - присоединяется Паскаль, потому что ваши изыскания были мне, к сожалению, неизвестны.

- Вы забыли сказать главное, уважаемый мэтр Паскаль - вмешивается представительный горбоносый красавец с густыми бархатными бровями и легкой любезной улыбкой в уголках рта.

- Насколько я понял, мэтр Лейбниц, вы просите слова, - строго намекает Пифагор. - Рад его вам предоставить.

Тот, извиняясь, склоняет набок голову в крутокудром каштановом парике. Достопочтенному председателю незачем затрудняться! Он, Лейбниц, хотел лишь заметить, что заслуга мэтра Паскаля не столько в том, что он открыл арифметический треугольник, сколько в том, что ему удалось вывести формулу сочетаний. Ту самую формулу, с помощью которой легко вычислить любой элемент числового треугольника.

- Прошу прощения! - живо перебивает Паскаль. - Одновременно со мной ту же формулу вывел мэтр Пьер Ферма.

- Не отрицаю! - весело басит Ферма. - И все-таки честь ознакомить собравшихся с некоторыми свойствами формулы сочетаний я предоставляю вам.

Паскаль молча кланяется и, подойдя к стоящей у камина грифельной доске, выписывает на ней две таблицы.

- Как видите, - поясняет он, - арифметический треугольник изображен здесь в двух видах: в числовом и условном, где каждый член его выражен через число сочетаний из номера строки по номеру своего места в ней. Разумеется, верхней строке и первому числу каждой строки присвоен нулевой номер. Далее обратите внимание на то, что все сочетания, у которых верхний индекс нуль, равны единице. Почему это так, понять нетрудно. Стоит только сравнить обе таблицы. Выберем, допустим, шестую строку (ее порядковый номер 5) и рассмотрим два ее числа, хотя бы 5 и 5. Одно из них в условном треугольнике обозначено как , второе - как . Но ведь числа эти равны между собой, ибо каждое из них порознь равно 5: == 5. В свою очередь можно записать как . И если это обобщить для любой строки (n) и любого порядкового числа в ней (m), то получится любопытное свойство сочетаний: (це из эн по эм равно це из эн по эн минус эм). Отсюда ясно, что так как с одной стороны = 1, а с другой , то и выходит, что . Ну, а дальше уж, для общности правила, условились и С() тоже считать единицей. Вот вам простой и удобный способ отыскивать любое, даже самое большое число сочетаний. И потому вопрос, чему равно, скажем, число сочетаний из тысячи по девятисот девяноста девяти, не должен пугать даже школьника, - вычислить это проще простого:

- За-за-замечательно! - восхищается Тарталья. - Я бы до такого ни-ни-никогда не додумался.

- Не клевещите на себя, дорогой мэтр Тарталья, - протестует Паскаль. Просто вы жили на сто лет раньше, и время формулы сочетаний еще не пришло. А теперь попрошу нашего досточтимого председателя предоставить слово мэтру Лейбницу, ибо я горю желанием узнать, что сделал с арифметическим треугольником он.





- С величайшим удовольствием! - кивает Пифагор. - Тем более что я и сам давно дожидаюсь такого случая.

- Собственно говоря, я шел по стопам мэтра Паскаля, - уголками рта улыбается Лейбниц, - но мой треугольник составлен в обратном порядке. Так сказать, шиворот-навыворот. Прежде всего вместо целых чисел я взял дробные. А уж из этого вытекает и все остальное.

Он вытирает доску влажной тряпкой и пишет на ней другую таблицу.

- Этот свой треугольник я назвал гармоническим, - поясняет он.

- Превосходно! - горячо одобряет Пифагор. - Всегда говорил, что главное в мире - гармония.

- Вполне с вами согласен, - кланяется Лейбниц. - Но название это объясняется тем, что в правом и левом наклонных рядах моего треугольника стоят числа, которые принято называть гармоническим рядом: 1/1,1/2,1/3,1/4, 1/5, 1/6, 1/7, ... Особенность этого ряда заключается в том, что сумма его членов: 1/1 + 1/2 + 1/3 + 1/4 + 1/5 + 1/6 +1/7... не стремится ни к какому определенному числу - иначе говоря, она бесконечна. Не то что, скажем, другой ряд: 1/2 +1/22 + 1/23 + 1/24 +1/25 +... =1/2 + 1/4 + 1/8 + 1/16 + 1/32 + ..., сумма которого стремится к единице. Так вот, если в треугольнике мэтра Паскаля каждое число равно сумме двух чисел, стоящих НАД ним (справа и слева), то в моем треугольнике каждый член равен сумме чисел, стоящих ПОД ним (также справа и слева). Например 1/6 =1/12 + 1/12. А потому, если в треугольнике мэтра Паскаля общий член выражается формулой , то в моем он выглядит так: .

Вот, например, в третьем ряду сверху второй член таков:

- О-о-очень любопытно! - восклицает экспансивный Тарталья.

- Но это еще не все! - продолжает Лейбниц. - Выберем какой-нибудь наклонный ряд - скажем, второй: 1/2 1/6 1/12 1/20 1/30 1/42. Начнем вычисление с любого, хотя бы со второго его члена, то есть с 1/6. Тогда из сказанного о законе образования членов треугольника прежде следуют такие равенства:

1/6-1/12=1/12

1/12-1/20=1/30

1/20-1/30=1/60

1/30-1/42=1/105

.....................

Сложим почленно правые и левые части этих равенств. Все равные слагаемые в левых частях, имеющие противоположные знаки (плюс и минус), взаимно уничтожатся, и останется только первое число 1/6. Значит, 1/6 = 1/12 +1/30 + 1/60 + 1/105+ ... Но ведь правая часть этого равенства есть сумма всех чисел следующего за этим наклонного ряда, начиная с 1/12 и до бесконечности. И если в треугольнике мэтра Паскаля каждый член равен конечной сумме чисел, стоящих СЛЕВА и расположенных НАД данным числом, то в моем треугольнике каждое число равно бесконечной сумме чисел, стоящих СПРАВА и ПОД данным.