Добавить в цитаты Настройки чтения

Страница 9 из 24



Помимо давности и длительности, стоит рассматривать время и по другим осям, аналогичным вещественным. Аналогична массе во времени сумма событий — событийность. Аналогична плотности частота — количество событий в единице времени. Представляет интерес и обратная величина — темп — длительность одного события. Но тут введен новый термин — «событие»; нужно еще условиться, что мы считаем одинарным событием, единого критерия тут нет. Для повторных волн, само собой разумеется, одна волна — одно событие. Для вращающихся тел событием можно считать один оборот вокруг оси, для движущихся линейно — продвижение на величину своего тела, для живых существ — один шаг, или один взмах крыла, или одно зрительное впечатление — все это близко к одной секунде.

Событие — это некий элементарный акт в процессе, элементарное движение или действие. Поскольку события различны по длительности, здесь мы сравниваем количество элементов в разных процессах. Точной аналогии с плотностью и массой нет, однако аналогия была бы точной, если бы, описывая вещество, мы занимались сравнением количества элементов на разных этажах, т е. количества звезд в галактике, жителей в городе, атомов в молекуле, частиц в ядре, кирпичей в сооружении, искусственном или природном. Выше мы не упоминали о таком сравнении Но и оно представляет интерес при технических и физических расчетах. Если элементов немного, каждый имеет значение, в молекулах, например, или же в семейной жизни. Если же элементов тысячи, миллионы, триллионы… расчет ведется по статистическим законам. И, как ни странно, рассчитать судьбу миллионов легче, чем единицы. Например, в городах достаточно точно предсказывают количество аварий в сутки, но совершенно невозможно предсказать, какая именно машина, в котором часу и на какой улице попадет в аварию.

Свойства времени — сроки, темпы и событийность — изображены на табл.8. Если говорить строже, изображены сроки существования физических тел, характеристики процессов, происходящих в них, частота и количество изменений. Количество же изменений можно сравнивать пока я моргнул один раз, колеса поезда провернулись три раза, винт самолета — сто раз. Такое сравнение и называют измерением времени Независимого, пустого времени, так же как и пустого пространства, не существует, повторяю. Размеры тел измеряют, сравнивая их с размерами других тел — с эталонным платиновым метром или с длиной электромагнитной волны, время измеряют, сравнивая измеряемое событие с другим — эталонным с падением струйки воды или песка, колебанием маятника часов, вращением Земли, с частотой волны.

Процессы изменений изменчивы сами, можно изменять их и искусственно. Если изменить искусственно все процессы, это равносильно изменению времени, будет восприниматься как изменение времени. Темп времени хотелось бы иногда ускорять, для практики это было бы очень удобно. Отдельные–то процессы ускоряют повсеместно (иду медленно, перехожу на бег, бегу еще быстрее). Но полезно бы найти подход и к всеобщему ускорению.

Один из таких подходов — противоположность эйнштейновскому парадоксу времени. По Эйнштейну, собственное время системы замедляется, когда скорость ее растет. По этой логике время ускоряется, когда скорость уменьшается. Но мы на Земле как бы неподвижны, у нас скорость нулевая. Нужна бы ниже нулевой. Не отрицательная, не скорость в другом направлении, а малая — меньше нулевой. Абсурд?

Но тут припоминается, что при субсветовых скоростях растет масса. Не с ростом ли массы связано замедление процессов? И не вызывает ли ускорение процессов (времени) уменьшение массы? Между прочим, об этом говорилось выше — у нас на Земле масса не нулевая, немножко уменьшена тяготением. Уменьшается она и в химических, и в ядерных реакциях синтеза. Уменьшается, по–видимому, в поле положительного заряда, т. е. в разреженном, недонапряженном вакууме.

Так что в принципе отнимать массу у неподвижного тела возможно. Какова тогда будет его потенциальная энергия? Меньше нулевой — отрицательная. А скорость? Мнимая! Но об этом говорилось уже.

К сожалению, изменение времени существенно только на чрезвычайно плотных телах, таких, как пульсары, но опыты на пульсарах пока не в наших возможностях. Теоретически можно было бы сравнивать ход сверхточных часов на Земле и на Луне или на Земле и спутнике, но тут разница очень мала — примерно одна секунда за тридцать лет.

Что же происходит в телах при замедлении или ускорении времени. Самое примитивное предположение: масса прибывает или же убывает, а момент вращения не изменяется. Пульсары образуются из звезд при резком сжатии. Исходная звезда делала один оборот примерно за месяц, пульсар — за доли секунды. Танцор прижал руки к бокам, закрутился быстрее. С некоторой грустью написал я это объяснение. Если все так просто, едва ли в сложных телах получится пропорциональное изменение времени. И прости–прощай надежда на субсветовые странствия будущих астронавтов!

Для живых существ существует еще другой способ ускорений времени — ускорение восприятия. Человек воспринимает 16 кадров в секунду, многие животные — гораздо больше. Ласточка мух ловит при скорости 90 км/с. Но это уже относится к следующему разделу, посвященному жизни.

В кино обычно снимается 24 кадра в секунду. Если снимать больше, время можно растянуть, если снимать меньше — сжать, замедлить, показать как распускается цветок, как здание вырастает на глазах.

Техническое ускорение восприятия времени — рапид–съемка.

Киноленту можно пустить и задом наперед — обратный ход времени. Но это все кажущееся, видимое, но не действительное изменение времени.



Может ли где–либо в природе время идти задом наперед? Может, если все процессы идут там в противоположном направлении, но обязательно ВСЕ. И так же с изменением темпа — только у всех.

Одномерно ли время? Изменение темпа — вот вторая координата. Это как бы переход с одной движущейся ленты на другую. Недаром же ускорение измеряют сантиметрами, деленными на квадратные секунды. Квадратные!

Обо всем этом я написал в повестях «Темпоград» (1980) и «Делается открытие» (1978). Они изданы. Так что темпорология — будущая наука о времени уже декларирована в печати…

12. Метаморфистика. После обзора вещества, энергии и времени на очереди обзор движения, поскольку движение происходит в пространстве и времени и обязательно связано с энергией.

Простейшее движение — механическое перемещение; все остальные виды движения объединяются в одном слове «изменение». Впрочем, не бывает перемещений без изменения и изменений без перемещения.

Перемещение изучено еще в XVII веке наукой по имени механика с ее тремя разделами: статикой, кинематикой и динамикой. Можно предложить науку об изменениях — метамеханику, в ней, естественно, будут разделы: метастатика, метакинематика и метадинамика. Такая наука не была создана пока, видимо, не понадобилась. Почему? Потому что, как мне кажется, она раздробилась по другим наукам об изменениях различных материалов (минералов, растений, металлов, тканей) с различными способами воздействия: тепловыми, электрическими, механическими, мало сходными между собой.

Пока не понадобилась, но понадобится в будущем.

Чем отличается изменение от развития? Понятие изменения шире. Развитие, согласно определению, это постепенное изменение от простого к сложному, от низшего к высшему. B природе же встречаются и обратные изменения — от высшего к низшему, от сложного к простому или от равного к равному. И необязательно постепенные, бывают и быстрые, катастрофические, взрывные. Изменение разнообразнее. Развитие — один из типов изменения.

Итак, наука об изменениях — метаморфистика, она же метамеханика. Цельной науки пока нет, но основные законы ее можно себе представить.

Чтобы превратить любое тело А в некое другое тело В, в самом общем случае необходимо:

1. Разобрать тело А на элементы.

2. Отсеять ненужные элементы.