Страница 7 из 28
Для снижения сосредоточенных нагрузок, действующих на маршевую ступень ракеты, тяга стартовых ускорителей прикладывалась к массивному седьмому отсеку, сбрасываемому вместе с отработавшими стартовиками. Принятое размещение стартовых ускорителей. в сумме весивших больше, чем маршевая ступень, существенно сдвигало назад центр масс всей ракеты. В связи с этим, на ранних вариантах ракеты для обеспечения требуемой статической устойчивости на стартовом участке полета, позади каждого из рулей размещалось по крупногабаритному шестиугольному стабилизатору размахом 3348 мм, закрепленному на все том же сбрасываемом седьмом отсеке ракеты.
Разработка двухступенчатой зенитной ракеты большой дальности В-860 с использованием твердотопливных ускорителей и ЖРД в качестве маршевой двигательной установки была технически оправдана уровнем развития отечественной промышленности и науки конца 1950-х гг. Однако следует отметить, что на начальном этапе разработки С-200 параллельно с В-860 в ОКБ-2 рассматривался и полностью твердотопливный вариант ракеты, имевший обозначение В-861. В составе В-861 должно было также использоваться бортовое радиоэлектронное оборудование, полностью выполненное на базе полупроводниковых приборов и ферритовых элементов. В соответствии с директивными документами представление опытного образца В-801 на совместные испытания планировалось на 4-й квартал 1961 г.
Но довести до конца эту работу в то время не удалось. При этом, в первую очередь, сказалось отсутствие отечественного опыта создания больших твердотопливных ракет, соответствующей производственной базы, а также нехватка необходимых специалистов. В их отсутствие эти работы приходилось выполнять, опираясь в значительной степени на имевшуюся к тому времени информацию о применении твердых топлив для ракет различного назначения в США.
Основополагающее значение для развития отечественной твердотопливной ракетной техники приобрело то, что в конце 1950-х тт. по инициативе Д.Ф.Устинова к реализации большой программы освоения в ракетах новых типов твердых топлив были подключены многие конструкторские бюро Государственного комитета по оборонной технике (ГКОТ) — ленинградское ЦКБ-7, пермское СКВ-172, свердловское ОКБ-9 и ряд других.
Впрочем, для создания твердотопливных ракетных двигателей с необходимыми характеристиками в те годы требовалось создать не только топлива с высокой энергетикой, но и новые металлические и неметаллические высокопрочные и теплостойкие материалы, технологические процессы их изготовления и соответствующую производственную базу. Предстояло построить специальные испытательные стенды, оснащенные современными измерительными средствами и оборудованием для испытаний. Требовалось разработать новые системы управления ракетами, поскольку отработанные принципы управления ракетами с двигателем на жидком топливе совершенно не подходили для твердотопливных ракет, двигатели которых имели значительные разбросы тяговых характеристик, которые крайне сложно было устранять какими-либо регулирующими средствами. Требовалось, наконец, осуществить целый ряд основополагающих научно-исследовательских работ но теоретическим вопросам в области баллистики и динамики полета твердотопливных ракет, в области прочностных расчетов, материаловедения, программирования и вычислительной техники.
Таким образом, применение твердотопливных двигателей в отечественной ракетной технике в конце 1950- х гг. сдерживал целый комплекс многообразных причин. А если к тому же добавить классическое положение о том, что энергетические характеристики твердых топлив значительно ниже, чем жидких, то вполне понятно, почему в создававшихся тогда ракетах предпочтение, как правило, отдавалось жидкому топливу, а твердотопливным двигателям в лучшем случае отводилась роль ускорителей.
Одновременно с изучением возможности использования различных типов двигательных установок в процессе выбора основных технических решений по В-860 были также проведены работы по определению наиболее рациональных траекторий ее полета к цели. Исходя из принятых в качестве типовых траекторий и выбранных характеристик силовой установки ракеты, были определены режимы полета, что послужило дополнительным материалом для проведения оптимизации компоновочной и аэродинамической схемы ракеты, выбора размеров рулей и законов управления.
После сравнительного анализа возможных вариантов была выбрана нормальная аэродинамическая схема ракеты с расположением рулей позади крыла. Две пары крыльев очень малого удлинения крепились к относительно короткому корпусу. Корневая хорда крыльев составляла 2/3 длины ракеты. Впервые примененная в нашей стране на В-860, подобная аэродинамическая компоновка позволила получить практически линейные характеристики моментов аэродинамических сил в диапазоне от малых до больших значений углов атаки, значительно обложить управление полетом, упростить формирование контура стабилизации и обеспечить достижение требуемой маневренности ракеты на больших высотах.
Широкий диапазон возможных условий полета — изменение скоростных напоров набегающего потока в десятки раз, скоростей полета от дозвуковой до почти в семь раз превосходящей скорость звука — все это затрудняло применение в качестве исполнительных органов управления полетом аэродинамических рулей с отдельным механизмом, регулирующим их эффективность в зависимости от параметров полета. Предложенные ОКБ-2 рули (точнее — рули-элероны) были трапециевидной формы и состояли из двух частей с торсионными связями, представляя собой маленький шедевр инженерной мысли. Хитроумная механическая конструкция при одном и том же значении отклонения корневой части руля обеспечивала автоматическое уменьшение угла поворота большей части руля по мере роста скоростного напора, что суживало диапазон величин действующих на ракету управляющих моментов.
В ранее отработанных радиолокационных головках самонаведения авиационных ракет для узкополосной фильтрации эхо-сигнала от цели использовался опорный сигнал, поступающий от РЛС самолета-носителя на так называемый "хвостовой канал" аппаратуры ракеты. Характерной особенностью ГСН ракеты В-860 стало применение для выработки опорного сигнала расположенного на ее борту автономного высокочастотного гетеродина. Выбор такой схемы был обусловлен применением в РПЦ комплекса С-200 режима фазокодовой модуляции. В процессе предстартовой подготовки осуществлялась точная подстройка бортового высокочастотного гетеродина ракеты под частоту сигнала данной РПЦ.
Для обеспечения безопасного размещения наземных элементов комплекса много внимания было уделено определению размеров зоны падения стартовых ускорителей, расцепка и отделение которых осуществлялись после окончания работы их двигателей, через 3–4,5 с после старта. Размеры этой зоны существенно зависели от целого ряда факторов — разбросов во времени работы каждого из четырех ускорителей, скорости разгона ракеты, скорости ветра в момент старта и угла наклона траектории. С целью упрощения конструкции пусковой установки и уменьшения размеров зоны падения ускорителей угол старта ракеты был принят постоянным, равным 48 град.
Особое внимание при проектировании было обращено на принятие специальных мер по защите элементов конструкции ракеты от аэродинамического нагрева, возникающего в процессе длительного (более минуты) полета с гиперзвуковой скоростью.
С этой целью наиболее нагреваемые в полете участки корпуса ракеты были покрыты теплозащитой.
В конструкции В-860 использовались в основном не дефицитные материалы. Для придания элементам конструкции требуемых форм и размеров использовались наиболее высокопроизводительные производственные процессы — горячая и холодная штамповка, крупногабаритное тонкостенное литье изделий из магниевых сплавов, точное литье, различные виды сварок. Нашли применение на ракете различные виды пластмасс, а также титановые сплавы, использовавшиеся в конструкции крыльев и рулей.