Добавить в цитаты Настройки чтения

Страница 12 из 13



Все модели строятся на допущениях относительно реального мира. В математические модели вводятся коэффициенты, количественно характеризующие данные допущения. Если мы заложим в модель неправильную исходную информацию, то получим неправильную картину реального мира. Принцип информатики «мусор на входе – мусор на выходе» (garbage in, garbage out) здесь полностью справедлив.

Эти общие замечания в полной мере относятся и к моделям, в рамках которых выводятся формулы теоретической стоимости опционов. Такие модели лишь частные представления о том, как оценивать опционы в определенных условиях. Поскольку как сама модель, так и заложенные в нее количественные параметры могут быть неверными, нет никакой гарантии, что полученные значения окажутся точными или вообще похожими на реальные рыночные цены.

На самом деле трейдеры по-разному оценивают полезность математиче ских моделей и выводимых из них оценок стоимости опционов. Одни считают, что это своего рода «фокусы» с формулами, которые не имеют никакого отношения к реальному миру. Другие полагают, что таблица со значениями теоретической стоимости опционов решает все их проблемы. Истина, по-видимому, находится где-то посередине.

Начинающий опционный трейдер подобен тому, кто впервые входит в темную комнату. Не имея ориентиров, он идет на ощупь и, если повезет, может наткнуться на то, что ищет. Трейдер, знакомый с основами теории цено образования опционов, входит в ту же комнату со свечой в руке. Он видит, как расставлена мебель, но скудный свет свечи не позволяет разглядеть детали. Кроме того, мерцание пламени искажает восприятие. Тем не менее со свечой шансы найти то, что ищешь, выше.

Реальные проблемы с моделями и формулами стоимости опционов возникают у трейдера, когда он приобретает определенный опыт. По мере обретения уверенности он заключает все более крупные сделки. И вот тут невозможность разглядеть детали в комнате вкупе с искажениями, вызванные мерцанием пламени, становятся более значимыми. Теперь неправильная интерпретация увиденных образов может привести к финансовой катастрофе, поскольку цена ошибки многократно возрастает.

Самое разумное – использовать теорию, но с полным пониманием того, что теория может, а что нет. Начинающие опционные трейдеры обнаружат, что модели и формулы – это ценнейшие инструменты анализа цен опционов. Из-за информации, которую они дают, подавляющее большинство успешных трейдеров используют в своей работе тот или иной способ оценки теоретической стоимости опционов. Однако если опционный трейдер хочет извлечь из такого подхода максимальную пользу, он должен представлять не только его сильные стороны, но и ограничения. В противном случае он будет мало отличаться от того, кто блуждает в полной темноте[9].

Простой метод

Как ожидаемый доход и теоретическая стоимость используются при оценке опционов? Для начала рассчитаем ожидаемый доход от опциона. Возьмем простой пример.

Предположим, что цена базового контракта – 100 долл. и что в определенный день в будущем, который мы назовем датой экспирации, она может принять одно из следующих значений: 80, 90, 100, 110 или 120 долл. Предположим также, что все пять значений равновероятны, т. е. вероятность каждого – 20 %. Цены и вероятности можно графически изобразить с помощью прямой (илл. 3.1).

Илл. 3.1. Цены базового контракта и их вероятности

Если мы займем длинную позицию в базовом контракте по нынешней цене в 100 долл., то каким будет ожидаемой доход при экспирации? С вероятностью 20 % мы потеряем 20 долл., если контракт будет стоить 80 долл. С вероятностью 20 % мы потеряем 10 долл., если контракт будет стоить 90 долл. С вероятностью 20 % мы ничего не потеряем, если контракт будет стоить 100 долл. С вероятностью 20 % мы получим 10 долл., если контракт подорожает до 110 долл. И с вероятностью 20 % мы получим 20 долл., если контракт подорожает до 120 долл. Результат составит:

Поскольку прибыли и убытки точно уравновешивают друг друга, ожидаемый доход от длинной позиции равен нулю. Аналогичный расчет показывает, что ожидаемый доход от короткой позиции, занятой по текущей цене 100 долл., также равен нулю. При этих ценах и вероятностях, какую бы позицию мы ни заняли, длинную или короткую, в долгосрочной перспективе можно рассчитывать только на нулевой результат.



Предположим теперь, что мы заняли длинную позицию в 100 колле. Если забыть о премии, которую надо заплатить за этот колл, каким будет ожидаемый доход при ценах и вероятностях, указанных на илл. 3.1? Если цена базового контракта на дату экспирации составит 80, 90 или 100 долл., то колл истечет без исполнения. Если цена базового контракта составит 110 или 120 долл., то колл будет стоить соответственно 10 и 20 долл. Можно записать следующее уравнение:

Колл не может стоить меньше нуля, поэтому ожидаемый доход от позиции в колле всегда величина неотрицательная. В данном случае ожидаемый доход – 6 долл.

Чтобы на основе этого подхода оценить стоимость опциона, нужно задать ряд возможных цен базового контракта при экспирации и связанных с ними вероятностей. Затем для опциона с некоторой ценой исполнения следует рассчитать стоимость при каждой цене базового контракта, умножить ее на соответствующую вероятность и суммировать результаты. Это и будет ожидаемый доход от опциона.

В приведенном примере мы взяли предельно простую ситуацию с пятью равновероятными значениями цены. Как сделать нашу модель более реалистичной? Прежде всего нужно учесть порядок расчетов по опционам. В США ко всем опционам применяется акционный метод расчетов, предполагающий немедленную уплату всей причитающейся за опцион суммы. Если ожидаемый доход от 100 колла составляет при экспирации 6 долл., то для получения его сегодняшней стоимости необходимо вычесть затраты на поддержание позиции. Если годовая процентная ставка – 12 % (1 % в месяц), а до даты экспирации осталось 2 месяца, то из 6 долл. следует вычесть 2 % затрат на поддержание позиции, или около 12 центов. Таким образом, теоретическая стоимость опциона составит 5,88 долл.

Какие еще факторы можно учесть? Мы исходили из того, что все пять вариантов цены равновероятны. Реалистично ли такое допущение? Предположим, что возможны только две цены при экспирации, 110 и 250 долл. Если сегодня базовый контракт стоит 100, то какая из цен более вероятна в будущем? Опираясь на опыт, большинство трейдеров скажут, что резкое отклонение цены от ее нынешнего значения менее вероятно, чем незначительное. Иными словами, 110 долл. более вероятны, чем 250. Поэтому будущие значения нашей цены, если учесть теорию вероятностей, должны быть близки к ее нынешнему значению. Такое распределение показывает илл. 3.2. Теперь ожидаемый доход от 100 колла составит:

Илл. 3.2. Более реалистичное распределение вероятностей цен при экспирации

Если, как и прежде, к опциону применяется акционный метод расчетов, а затраты на поддержание позиции составляют 2 %, то теоретическая стоимость равна 3,92 долл.

Заметим, что на илл. 3.2 возможные значения цены и вероятности расположены симметрично. Хотя новые вероятности и изменили ожидаемый доход от 100 колла, ожидаемый доход от любой позиции в базовом контракте по-прежнему равен нулю. Каждому повышательному изменению цены соответствует равное по величине и вероятности понижательное изменение. Однако мы можем считать, что ожидаемый доход от базового контракта не равен нулю и что вероятность изменения цены в одном направлении больше, чем в другом. Взгляните на возможные значения цены и вероятности на илл. 3.3. При этих новых вероятностях ожидаемый доход от длинной позиции в базовом контракте составит:

9

Эти ограничения обсуждаются в двух статьях: Figlewski, Stephen, «What Does an Option Pricing Model Tell Us about Option Prices?», Financial Analyst Journal, September/October 1989, рр. 12–15, Black, Fischer, «Living Up to the Model», Risk, Vol. 3, No. 3, March 1990, рр. 11–13.