Добавить в цитаты Настройки чтения

Страница 11 из 34



Огромные успехи, достигаемые разумом посредством математики, естественно, возбуждают надежду, что если не сама математика, то во всяком случае ее метод достигнет успеха также и вне области величин, так как она сводит все свои понятия к созерцаниям, которые она может дать a priori и посредством которых она может, так сказать, овладеть природой, тогда как чистая философия со своими дискурсивными априорными понятиями стряпает учения о природе, не будучи в состоянии сделать реальность своих понятий a priori созерцательной и тем самым достоверной. К тому же у мастеров математического искусства нет недостатка в уверенности в себе, да и общество возлагает большие надежды на их ловкость, лишь бы они попробовали взяться за это дело. Так как они вряд ли когда-либо философствовали по поводу своей математики (трудное дело!), то специфическое различие между указанными двумя видами применения разума вообще не приходит им в голову. Ходячие, эмпирически применяемые правила, которые они заимствуют у обыденного разума, они считают аксиомами. Откуда же получаются понятия пространства и времени, которыми они занимаются (как единственными первоначальными величинами),-этот вопрос вовсе не беспокоит их, и вообще им кажется бесполезным исследовать происхождение чистых рассудочных понятий и вместе с тем сферу их применения; они довольствуются тем, что пользуются ими. Во всем этом они правы, если только они не выходят за указанные им границы, а именно за пределы природы. В противном случае они незаметно переходят из области чувственности на непрочную почву чистых и даже трансцендентальных понятий (instabilis tellus, i

abilis unda), где нельзя ни стоять, ни плавать, а можно только сделать несколько слабых шагов, от которых время не сохраняет ни малейшего следа, между тем как в математике они пролагают широкий путь, которым с уверенностью могут идти также и отдаленнейшие поколения.

Так как мы считаем своим долгом точно и с уверенностью определить границы чистого разума в его трансцендентальном применении, между тем как такого рода стремление обладает той особенностью, что, несмотря на самые настойчивые и ясные предостережения, все еще надеются, пока окончательно не отказываются от своего намерения, проникнуть за пределы опыта, в заманчивые области интеллектуального,-то необходимо отнять как бы последний якорь у богатой воображением надежды и показать, что следование математическому методу в этом роде знания не может дать никакой выгоды, разве только то, что тем яснее откроются его собственные недостатки: хотя геометрия и философия подают друг другу руку в естествознании, тем не менее они совершенно отличны друг от друга и потому не могут копировать методы друг у друга.

Основательность математики зиждется на дефинициях, аксиомах и демонстрациях. Я ограничусь указанием на то, что ничто из перечисленного в том значении, какое оно имеет в математике, неприменимо в философии и не может быть предметом подражания, что геометр, пользуясь своим методом, может строить в философии лишь карточные домики, а философ со своим методом может породить в математике лишь болтовню; между тем задача философии именно в том и состоит, чтобы определять свои границы, и даже математик, если только его талант от природы не ограничен и выходит 3d рамки своего предмета, не может отвергнуть предостережений философии или пренебречь ими.

1. О дефинициях. Давать дефиницию-это значит, собственно, как видно из самого термина, давать первоначальное и полное изложение понятия вещи в его границах. Согласно этим требованиям, эмпирическое понятие не поддается дефиниции- оно может быть только объяснено. Действительно, так как в эмпирическом понятии мы имеем лишь некоторые признаки того или иного вида предметов чувств, то мы никогда не уверены в том, не мыслится ли под словом, обозначающим один и тот же предмет, в одном случае больше, а в другом меньше признаков его. Так, одни могут подразумевать в понятии золото кроме веса, цвета и ковкости еще и то, что золото не ржавеет, а другие, быть может, ничего не знают об этом свойстве его. Мы пользуемся некоторыми признаками лишь до тех пор, пока находим, что они достаточны для различения; новые же наблюдения заставляют устранять одни признаки и прибавлять другие, так что понятие никогда не остается в определенных границах. Было бы бесполезно давать дефиницию такого понятия, так как, например, если речь идет о воде и ее свойствах, мы не останавливаемся на том, что подразумевается под словом "вода", а приступаем к экспериментам, и слово с теми немногими признаками, которые мы связываем с ним, оказывается только обозначением, но не понятием вещи, стало быть, даваемая здесь дефиниция понятия есть лишь определение слова. Во-вторых, понятия, данные a priori, например субстанция, причина, право, справедливость и т. д., строго говоря, также не поддаются дефиниции. Действительно, я могу быть уверенным в том, что отчетливое представление о данном (еще смутном) понятии раскрыто полностью лишь в том случае, если я знаю, что оно адекватно предмету. Но так как понятие предмета, как оно дано, может содержать в себе много неясных представлений, которые мы упускаем из виду при анализе, хотя всегда используем на практике, то полнота анализа моего понятия всегда остается сомнительной и только на основании многих подтверждающих примеров может сделаться предположительно, но никогда не аподиктически достоверной. Вместо термина дефиниция я бы лучше пользовался более осторожным термином экспозиция, и под этим названием критик может до известной степени допустить дефиницию, сохраняя в то же время сомнения относительно ее полноты. Итак, если ни эмпирически, ни a priori данные понятия не поддаются дефиниции, то остаются лишь произвольно мыслимые понятия, на которых можно попытаться проделать этот фокус. В этом случае я всегда могу дать дефиницию своего понятия; в самом деле, я должен ведь знать, что именно я хотел мыслить, так как я сам умышленно образовал понятие и оно не дано мне ни природой рассудка, ни опытом; однако при этом я не могу сказать, что таким путем я дал дефиницию действительного предмета. В самом деле, если понятие зависит от эмпирических условий, как, например, понятие корабельных часов, то предмет и возможность его еще не даны этим произвольным понятием; из своего понятия я не знаю даже, соответствует ли ему вообще предмет, и мое объяснение скорее может называться декларацией (моего замысла), чем дефиницией предмета. Таким образом, доступными дефиниции остаются только понятия, содержащие в себе произвольный синтез, который может быть конструирован a priori; стало быть, только математика имеет дефиниции. Действительно, предмет, который она мыслит, показан ею также a priori в созерцании, и этот предмет, несомненно, не может содержать в себе ни больше, ни меньше, чем понятие, так как понятие о предмете дается здесь дефиницией первоначально, т. е. так, что дефиниция ниоткуда не выводится. Немецкий язык имеет для понятий expositio, explicatio, declaratio и definitio только один термин- Erklarung; поэтому мы должны несколько отступить от строгости требования, так как мы отказали философским объяснениям в почетном имени дефиниций и хотим свести все это замечание к тому, что философские дефиниции осуществляются только в виде экспозиции данных нам понятий, а математические -в виде конструирования первоначально созданных понятий; первые осуществляются лишь аналитически, путем расчленения (завершенность которого не обладает аподиктической достоверностью), а вторые- синтетически; следовательно, математические дефиниции создают само понятие, а философские -только объясняют его. Отсюда следует: