Добавить в цитаты Настройки чтения

Страница 48 из 55

Полуширина пика описывается формулой

t1/2 = 3,52 l / Δkp, (3)

где l — время жизни нейтронов, а максимальная мощность дается формулой

 (4)

Данные, показанные на рисунках 63 и 64, получены в результате интенсивных исследований на экспериментальных системах: реакторах «Годива», KEWB 6 и SPERT и в экспериментах CRAC 5.

Реакторы «Годива I» и «Годива II» представляли собой почти целиком твердые критические металлические сборки из урана (93 % 235U), используемые для установок по облучению. При нескольких центах выше мгновенной критичности контролируемая мгновенная вспышка мощности дала отличную экспериментальную картину, дополняющую кривые на рисунках 63 и 64. Из-за теплового расширения возникает мгновенный отрицательный температурный коэффициент реактивности, около 4,3 X 103 β/°C (в зависимости от модели), который непосредственно связан с накоплением энергии деления. Изменение во времени происходит столь быстро, что никакое тепло из системы не теряется. Когда шаг изменения реактивности увеличивается до 4 центов или до 5 центов выше критичности на мгновенных нейтронах, появляются новые эффекты. Мощность растет до такой высокой величины, что тепловое расширение отстает от роста накопления энергии, и простое соотношение между E и Δkp в уравнении (2) перестает быть справедливым. При еще более высоких шагах изменения реактивности выделение энергии становится пропорциональным квадрату, а затем кубу исходного превышения реактивности. Структурные разрушения от ударных волн начинаются при 10 центах или 11 центах, определяя, таким образом, предел для плановых повторяющихся вспышек.

Переходное поведение систем растворов изучалось на двух реакторах KEWB 6. Активная зона KEWB-A представляла собой сферу из нержавеющей стали объемом 13,6 л, содержащую 11,5 л раствора высокообогащенного UO2SO4, отражателем был толстый графит. Этот реактор позволял исследовать переходные режимы в системах растворов, в течение которых период достигал 2 миллисекунд. Активная зона KEWB-B была сконструирована специально так, чтобы получить в этих экспериментах период в 1 мс. В нем активная зона была цилиндрической и во время экспериментов по изучению переходных процессов (вплоть до приблизительно 5,2 β выше критичности на мгновенных нейтронах) содержала 18 л раствора UO2SO4.

В системах KEWB 6 в широком диапазоне вспышек мощности преобладающими были, по-видимому, два механизма гашения. Первый из них — это рост температуры нейтронов и тепловое расширение при росте температуры активной зоны, в результате чего мгновенный температурный коэффициент становился равным -2 цента/°C при 30 °C. Этот эффект достаточен для того, чтобы объяснить наблюдаемое энерговыделение вблизи критичности на мгновенных нейтронах, но не он преобладает в экспериментах с большим удалением от нее. Второй механизм гашения — образование пузырьков 104,105. Имеющиеся данные свидетельствуют в пользу того, что во время пика процессом деления создается пустой объем, состоящий из множества очень маленьких пузырьков (микропузырьков) с внутренним давлением от 10 до 1000 атмосфер. Пузырьки позднее объединяются в большие пузыри и покидают систему, приводя к наблюдаемому коэффициенту образования газа около 4,4 л/МДж.





В росте этих микропузырьков, по-видимому, участвует повторное взаимодействие между осколками деления и возникшими после прежних делений микропузырьками. Таким образом можно объяснить механизм гашения, пропорционального квадрату выделения энергии. Эта модель хорошо описывает СЦР в растворах, несмотря на неточное знание того, в каком именно виде пузырьки образуются и растут.

В то время как программы KEWB 6, SPERT и TRIGA были в значительной степени ориентированы на безопасность реакторов, исследования по программе CRAC 5 замышлялись и проводились с целью дальнейшего понимания технологических аварий. СЦР инициировалась в цилиндрических емкостях диаметром 300 мм и 800 мм, наполненных растворами высокообогащенного урана с концентрацией от 48,2 г/л до 298 г/л. В большей части экспериментов растворы подавались в емкость с постоянной скоростью до тех пор, пока высота существенно не превышала критическое состояние. В некоторых экспериментах использовался нейтронный источник достаточной интенсивности, чтобы началась вспышка мощности, как только система достигала критичности, в то время как отсутствие такого источника в других экспериментах позволяло системе оказаться в надкритическом состоянии на мгновенных нейтронах до развития цепной реакции, в результате чего получался более высокий энерговыход.

В присутствии источника нейтронов величина энерговыхода в пике хорошо коррелировала со скоростью введения реактивности. Для периода короче 10 миллисекунд удельная мощность в пике, как было найдено, изменялась как обратный период в степени 3/2, что находится в согласии с предсказаниями, основанными на результатах экспериментов KEWB 6.

Результатом выполнения программы CRAC 5 является также получение полезных данных о мощности дозы, ожидаемой вблизи емкостей с растворами, в которых произошла СЦР (в отсутствие биологической защиты). Для цилиндра диаметром 300 мм на расстоянии 4 м от его поверхности доза составила около 3 X 10—15 Р на акт деления, а для цилиндра диаметром 800 мм — около 5 X 10—16 Р на акт деления.

Активные зоны реактора SPERT I (реактор гетерогенный, замедлитель и отражатель нейтронов — вода) были двух основных типов 93. Топливо зоны первого типа было в форме алюминиево — урановых пластин, как в реакторе для испытания материалов (MTR), и активные зоны спроектированы так, что в них имелись разные области: от области со слабым замедлением до более опасной области со слишком большим замедлением. Активная зона второго типа была составлена из заключенных в оболочку стержней UO2 диаметром приблизительно 10 мм. Обогащение урана в этих стержнях составляло 4 %.

Разгоны в реакторах с тепловыделяющими элементами пластинчатого типа широко изучались, начиная с 1957 года, в попытке разрешить проблемы конструкции активной зоны и найти ограничения для таких реакторов. В частности, были тщательно определены период и величина энергии, могущая вызвать повреждение. Затухание переходной мощности в системах SPERT более сложно, чем в более простых реакторах. Разработанная модель учитывает нагрев и изменение плотности воды; нагрев и изменение структуры активной зоны, включая изменение геометрии и выбрасывание замедлителя из-за таких изменений; и, наконец, кипение воды рядом с пластинами и потери замедлителя, когда вода вытесняется из активной зоны. Когда активная зона пластинчатого типа была разрушена, реактивность, период, пик мощности и выделение энергии деления были существенно такие, какие были предсказаны. Разрушительный импульс давления пара, начавшийся где-то через 15 миллисекунд после завершения энерговыделения за счет СЦР, не предвиделся и, как полагают, был вызван очень быстрой передачей энергии от почти расплавленных алюминиевых пластин к тонкому слою воды между пластинами. Эта передача, происшедшая прежде, чем имело место сколько-нибудь значительное изменение объема, и возникшее в результате высокое давление разрушили активную зону. Кажется, что этот же эффект участвовал в разрушении БОРАКС, SPERT и SL-1.

Второй тип активной зоны SPERT I 93 (стержни UO2 в воде, обогащение урана 4 %) испытывался в течение 1963 г. и 1964 г. Эксперименты по изучению переходных процессов с такой активной зоной показали действенность эффекта Доплера в самогашении и создали основу для анализа аварий подобных энергетических реакторов. Две попытки разрушить активную зону путем вывода реактора на очень короткие периоды (2,2 и 1,55 миллисекунд) были неудачными. В каждом случае эффект Доплера оказывался эффективным, и дополнительное гашение развивалось потому, что один или два топливных тонких стрежня (из нескольких сотен) трескался и вызывал локальное кипение. Считалось, что тонкие стержни были насыщены водой перед испытанием.