Страница 9 из 15
К сказанному остается добавить, что полная масса и полный электрический заряд почти замкнутого мира уже не равны нулю.
Таким образом, в нашем воображении вырисовывается картина, на описание которой не каждый бы и фантаст решился. Быть может, и наша Вселенная со всеми ее солнцами, млечными путями, туманностями, квазарами – всего лишь один из фридмонов.
Впрочем, фридмоны не обязательно должны заключать в себе только гигантские мироздания. Их содержимое может быть и более скромным: например, содержать в себе «всего лишь» одну галактику, звезду… А также несколько граммов или даже несколько сотых грамма вещества. Самое удивительное, что при всем этом все фридмоны внешне могут выглядеть совершенно одинаково.
Причем «лазейка», связанная с идеей фридмонов, имеет определенные преимущества перед всеми другими. Дело в том, что размеры сферической «горловины», которая ведет в почти замкнутое пространство, зависит от величины электрического заряда, содержащегося в этом почти замкнутом пространстве. Чем больше заряд, тем и размеры больше.
В таком случае, казалось бы, в природе должны встречаться частично замкнутые миры самых различных размеров (по крайней мере по виду «снаружи»). Ну а поскольку трудно представить себе, что огромная Вселенная имеет микроскопический электрический заряд, то фридмон, «включающий» в себя огромные миры, вроде бы должен иметь весьма малое распространение.
И вот тут природа как бы проявляет симпатию к этому удивительному феномену. Согласно расчетам академика А. А. Маркова, развившего идеи Фридмана, почти замкнутая система с большим электрическим зарядом должна быть неустойчива. Чтобы обрести эту самую устойчивость, она стремится во что бы то ни стало выбросить избыток электричества «наружу». Причем тот заряд, при котором система приобретает желанное равновесие, должен быть как раз микроскопический, близкий к заряду, которым обладают многие элементарные частицы.
Таким образом, получается, что если пространство в какой-то момент времени и обладало большим зарядом, то через некоторое время заряд этот неизбежно уменьшится. А значит, соответственно сократятся размеры и масса пространства, каковыми они предстают перед сторонним наблюдателем. То есть, говоря проще, согласно математическим выкладкам получается, что стягивание гигантских миров в точку отнюдь не маловероятно, а, напротив, практически неизбежно.
Исходя из теории фридмонов получается, что мы должны свыкнуться с мыслью: любая элементарная частица в принципе может оказаться «входом» в иные миры. Проникнув через этот вход, мы можем оказаться в совершенно иной Вселенной. Нашему взору, возможно, предстали бы иные галактики, населенные, вполне возможно, своими цивилизациями.
Оглянувшись же назад, мы бы увидели, что до микроскопических размеров сжалась теперь наша родная Вселенная. Если бы мы захотели вернуться назад, то пришлось бы снова проделать путь по коридору между мирами. Ну а окажись бы любопытство сильнее страха, то вполне возможно, мы могли бы отыскать другой фридмон, и тогда бы наше путешествие по иным мирам могло продолжаться до бесконечности.
Описанные выше путешествия могли бы привести не только к перемещениям в пространстве, но и, что для нас в данном случае наиболее интересно, к перемещениям во времени. Так во всяком случае и считают Стивен Хокинг и его последователи. Но прежде чем мы углубимся в устройство подобных «туннелей времени», надо, наверное, сказать несколько слов и о самом Хокинге. Уж больно неординарная это фигура даже для нашего времени, которое, кажется, уже отучило нас удивляться.
…Недавно в Кембридже состоялось не совсем обычное торжество. Профессора и студенты знаменитого Тринити-колледжа – того самого, где профессором был когда-то сам сэр Исаак Ньютон, – пением и аплодисментами приветствовали человека, неподвижно сидевшего в инвалидной коляске.
Человек в коляске был нем и недвижим. Тем не менее именно он сегодня занимает ту кафедру, которую когда-то занимал Ньютон, читает лекции студентам, создает новые книги и научные гипотезы, в том числе наиболее «безумные», а значит, и чрезвычайно интересные.
Беда постигла Стивена Хокинга в юности, когда он учился на первом курсе колледжа. Неизлечимая болезнь практически обездвижила все тело, а неудачная операция привела вдобавок еще и к тому, что Хокинг онеменел. И тем не менее он не сдался.
В какой-то мере Хокингу помогает современная техника. Коляска с электроприводом позволяет ему передвигаться самостоятельно, а расположенный под сиденьем кресла компьютер с синтезатором речи дает ему возможность говорить.
Стивен Хокинг сумел не только закончить колледж, но и стать профессором, написать несколько книг. Одна из последних называется «От Большого взрыва до черных дыр». На ней мы и остановимся более подробно.
Она представляет собой относительно небольшую (200 страниц)
научно-популярную работу, в которой описаны все космологические
теории и гипотезы последнего времени.
– Издатель сказал мне, что каждая новая формула будет со кращать число читателей вдвое, – сказал Хокинг. Поэтому в книге всего одна формула – это знаменитое эйнштейновское уравнение
Все остальное я постарался изложить как можно более доступным языком…
И надо сказать, что попытка популяризации Хокингу вполне удалась. В своей книге он рассказывает о гипотезе Большого Взрыва, согласно которой вся наша Вселенная когда-то образовалась из одной-единственной сингулярной точки.
По неведомой пока нам причине в один прекрасный миг эта точка взорвалась, и с той поры ее вещество все время расширяется, преобразуясь по дороге. Затем, как полагают многие ученые, большой маятник Вселенной качнется в обратную сторону – расширение может смениться сжатием до новой сингулярной точки. Таким образом, наша Вселенная должна иметь начало и конец.
Однако Хокинг с такой точкой зрения не согласен. Он полагает, что она чересчур пессимистична, поэтому ввел в науку новое понятие – воображаемое время. Используя это понятие, Хокинг создал модель такой Вселенной, у которой нет ни начала ни конца.
«Представьте себе движение по воображаемому шару, – пишет Хокинг. – Вы начали движение по нему с северного полюса и постепенно движетесь к югу, все время меняя широту места…»
Говоря иначе, Хокинг своими словами пересказывает ту притчу о плоскостном мире, с которой мы уже познакомились. Но рассматривает он ее применительно к нашему трехмерному (или, если угодно, четырехмерному) миру и приходит в конце концов к неожиданному выводу.
«По мере движения, – продолжает он свой рассказ, – широта места, т. е. длина окружности, будет возрастать, а потом, когда вы перевалите экватор, начнет сокращаться, пока не превратится в нуль. Что это – точка сингулярности?.. Нет, ведь если вы продолжите движение, то широта снова станет возрастать…»
Конечно, все сказанное выглядит весьма схематично. На самом деле мир устроен, наверное, значительно сложнее. Однако в том и есть один из талантов Хокинга – говорить о сложных вещах или емкими, точными формулами, или просто наглядными образами.
Он ввел понятие воображаемого времени, которое не имеет никакой связи с настоящим физическим временем, однако оказалось весьма удобным для описания многих процессов космологии.
Теория воображаемого времени – продолжение работы Хокинга над теорией «черных дыр». Когда он впервые познакомился с феноменом «черных дыр», введенным в обиход профессором Роджером Пенроузом, то был весьма поражен, что «черная дыра» – это такое место во Вселенной, откуда из-за чрезвычайно сильного тяготения, а значит, и искривления пространства не вырывается ничто: ни элементарная частица, ни луч света… «Получается, что „черная дыра“ ничего не излучает в пространство, а посему может быть совершенно незаметна, – сказал сам себе Хокинг. – Но разве так бывает?..»