Добавить в цитаты Настройки чтения

Страница 30 из 48



Можно ли продвинуться дальше по скорости на одновинтовом вертолете с шарнирным винтом классической конфигурации при запасе мощности на борту? Можно. Для этого надо увеличить окружную скорость вращения винта или уменьшить взлетную массу. Но не первое, ни второе не приводят к радикальным результатам. Так, увеличение окружной скорости ограничено числом М, которое должно быть меньше 1 для скорости потока на конце наступающей лопасти, а уменьшение массы приводит к прямому снижению эффективности вертолета как транспортного средства.

Вторым препятствием на пути повышения скорости полета вертолета является увеличение так называемой зоны обратного обтекания, т. е. зоны, где сечения лопасти обтекаются уже не с носка профиля, а с «хвостика». Например, при скорости полета 520 км/ч до 80 % лопасти будет находится в этой зоне и обтекаться с хвостика профиля, снижая аэродинамическое качество винта и ставя проблему балансировки вертолета в ряд главных.

Еще одна проблема увеличения скорости полета вертолета связана со снижением эффективности несущего винта как средства создания пропульсивной силы. На скоростях более 350 км/ч отмечается существенное падение «пропульсивного» коэффициента полезного действия несущего винта.

Кроме перечисленных «физических» ограничений существует ряд препятствий конструкторского характера. Например, создание несущей системы, способной отклонять результирующую силу винта для создания пропульсивной силы на углы более 20° в приемлемых габаритах, является очень сложной конструкторской задачей.

Какие же способы решения стоящих задач Вы видите?

Основные расчетные данные

Тип двигателей ВК-3000

Мощность, л. с 2х3200

Взлетная масса, кг 16 000

Число пассажиров 30

Максимальная скорость полета, км/ч 460

Крейсерская скорость, км/ч 420



Дальность полета, км 1400

Подходы могут быть разными. О концепции американской фирмы «Белл» я уже говорил. Но схема конвертоплана, все-таки, это уже уход немного в сторону от классического вертолета. К этому стоит добавить значительно более высокую стоимость подобных летательных аппаратов, большую массу при той же грузоподъемности, еще более строгие требования к надежности и безопасности полета, например в ситуации с отказом двигателя на режимах висения и полета с малыми скоростями.

Нам, на фирме «Камов», ближе подход, выбранный «Сикорским». В нашем проекте Ка-92 мы остаемся верны нашей «фирменной» схеме с соосными несущими винтами, хотя винт на Ка-92 уже совсем не такой, как на других вертолетах «Камова». Как и у «Сикорского», мы остановили свой выбор на так называемом жестком несущем винте. У него уже нет традиционных горизонтальных шарниров крепления лопастей, соответственно сведены к минимуму маховые движения лопастей (таким образом, в частности, решается задача предотвращения срывного обтекания отступаю щей лопасти). Сами лопасти стали короче и заметно жестче — это стало возможным благодаря применению самых современных композиционных материалов. Законцовки лопастей имеют особую форму — этим мы отодвигаем негативные последствия приближения скорости звука. Рассматриваем также вопрос управления скоростью вращения несущего винта, предусматривающего уменьшение его оборотов в крейсерском полете с высокой скоростью.

Кроме того, мы не используем несущий винт для обеспечения горизонтальной составляющей скорости — для этого на Ка-92 в хвостовой части установлен соосный толкающий воздушный винт. Он приводится в действие посредством трансмиссии от тех же двигателей, которые через редуктор вращают и жесткий соосный несущий винт. «Облагорожена» вся аэродинамика вертолета: фюзеляж его выполнен более обтекаемым, шасси сделано убирающимся, благодаря применению более коротких и жестких лопастей уменьшена высота колонки несущих винтов, а сама втулка и конструктивные элементы крепления и управления лопастями закрыты обтекателями. Все эти решения, по нашим расчетам, позволят получить на Ка-92 максимальную скорость полета не менее 460 км/ч и крейсерскую — порядка 420 км/ч. Сравните с нынешними 250–270 км/ч у большинства современных вертолетов! При этом Ка-92, имеющий взлетную массу 16 т, сможет брать на борт 30 пассажиров и перевозить их на расстояние до 1400 км.

Таким образом, нашу концепцию скоростного вертолета можно определить несколькими основополагающими моментами: жесткие бесшарнирные соосные несущие винты с новыми принципами управления, толкающий воздушный винт для обеспечения горизонтальной составляющей скорости и общее совершенствование аэродинамики вертолета.

Но подходы к решению задачи повышения скорости полета вертолета могут быть разными. Например, наши коллеги с МВЗ им. М.Л. Миля в своем проекте Ми-Х1 остаются верны одновинтовой схеме с шарнирным креплением лопастей несущего винта в целом традиционной конструкции. Для предотвращения срыва потока на отступающей лопасти ими разрабатывается оригинальное устройство, позволяющее блокировать ее «вредное» маховое движение (так называемая система SLES), а работающая на околозвуковых скоростях наступающая лопасть будет иметь стреловидную законцовку особого профиля. Но, как и у нас на Ка-92, для обеспечения поступательной скорости у Ми-Х1 будет толкающий винт в хвостовой части, который одновременно будет выполнять роль традиционного рулевого винта, т. е. средства компенсации разворачивающего момента. У нас, на Ка-92, с его аэродинамической симметрией, благодаря использованию соосных несущих винтов, как и на большинстве других вертолетов «Камова», этого момента нет по определению.

Тем не менее, создавая научно-технический задел Ка-92, мы нашли ряд новых приложений технологии скоростных вертолетов. Это демонстрирует идея скоростного вертолета продольной схемы Ка-102, которую мы впервые демонстрируем на МАКС-2009.

Расскажите, пожалуйста, поподробней об этом проекте.

Как и Ка-92, предлагаемый нами новый проект Ка-102 предусматривает применение бесшарнирных жестких несущих винтов и отдельных движителей для обеспечения горизонтальной скорости. Но, если Ка-92 выполняется по соосной схеме, то Ка-102 — уже по продольной. Один несущий винт размещается в передней части фюзеляжа, а вращающийся в противоположную сторону второй — в задней. Таким образом, если на Ка-92 возникающие моменты «замыкаются» в колонке несущих винтов, то у Ка-102 они будут восприниматься фюзеляжем, как, например, у строившегося когда-то транспортного вертолета Яковлева Як-24 или продолжающегося выпускаться и поныне американского «Чинука». Но в отличие от «Чинука», наш Ка-102 сможет летать гораздо быстрее — благодаря тем же, в целом, техническим решениям, что нами уже разработаны для Ка-92, а именно бесшарнирным жестким несущим винтам с новыми принципами управления и дополнительным винтовым движителям для обеспечения горизонтальной составляющей скорости.

По нашим расчетам, Ка-102 сможет иметь скорость до 500 км/ч. При этом он будет перевозить до 80–90 пассажиров, имея взлетную массу порядка 30 т. Имеющий компактные размеры соосный вертолет хорош для перевозки относительно небольшого числа пассажиров и грузов (в нашем случае — до 30 человек). А продольная схема позволяет иметь более длинный фюзеляж, в котором с комфортом разместится значительно большее количество пассажиров.

Силовая установка Ка-102 так же будет единой — это будут два газотурбинных двигателя, которые посредством трансмиссии приводят во вращения оба несущих винта, а также два тянущих воздушных винта (нечто подобное нами уже было реализовано полвека назад на знаменитом винтокрыле Ка-22, который, правда, выполнялся по поперечной схеме и мог летать со скоростью 350 км/ч).