Добавить в цитаты Настройки чтения

Страница 7 из 45



Лемма 4. Дискретность = Релятивизм = Причинность

Но возможно ли, чтобы мир был квантовым, а причинность в нем нарушалась? Применительно к математическому континууму это значило бы, что он не превосходит по мощности , но в отличие от натурального ряда почему-то не может считаться строго детерминированным, являясь хаотическим или содержа в себе нечто неуловимое. Результат Кантора следует тогда толковать не количественном смысле, а в качественном. Континуум С больше множества натуральных чисел N не потому, что за бесконечностью находятся новые числа: и т.д. (как это, например, было допущено в так называемой «теории трансфинитов», играющей на актуальной и потенциальной бесконечности и порождающей череду несчетных мощностей). Мы имеем одну-единственную бесконечность. Все зависит от того, как мы не нее «смотрим». Мы видим бесконечность по-разному. Это скорее вопрос для теории сознания, чем для математики.

Его можно обосновать так. После того как Гедель показал, что СН не противоречит стандартной теории множеств (ZF или NBG плюс AC), а затем Коэн «форсировал» этот результат доказательством, что отрицание СН также не приводит к противоречию, стало ясно, что гипотеза Кантора независима от созданной им теории. В заключении своего весьма обширного труда Коэн высказался так: «Точка зрения, которая, как предчувствует автор, может в конце концов стать принятой, состоит в том, что СН является, очевидно, ложной… Мы закончим эту книгу замечанием, что проблема СН не относится к числу тех, от которых можно избавиться, исключив из рассмотрения тот тип, к которому принадлежат множества действительных чисел» [14].

Физике для удовлетворения ее собственных нужд достаточно, чтобы математический анализ работал, и он успешно это делает. Но в самой математике этот анализ, основанный на континууме действительных чисел, оказывается в подвешенном состоянии. Это не значит, что он ложен. Но это может значить, что такой анализ, «построенный на песке» по выражению Г. Вейля [15], неявно для нас самих, скрывает в себе какую-то замечательную тайну. В нашем понимании это может подразумевать только одно: СН апеллирует к таким свойствам нашего мышления, которые не отражены в теории множеств. Возможно, эта тайна откроет нам глаза на нашу реальность и нас самих в ней.

Так что есть точка – бесконечно малая величина или ничто? Если она равна нулю, т.е. ее мера Лебега равна нулю, то и континуум С, как объединение всех точек, имеет нулевую меру, т.е. он в физическом смысле сингулярен. Т.о. точка должна иметь протяженность. Но если она является очень маленьким отрезком, которыми можно замостить С, то их число должно быть счетным. Иначе говоря, континуум состоит из дифференциалов счетной бесконечности и еще чего-то между ними, что и создает непроницаемый фон: невозможно найти в С дыру, которая не была бы числом. Вообще говоря, было бы очень странно, если бы, ковыряясь в числах, мы нашли среди них сапоги, и поэтому непроницаемый однородный континуум выглядит даже очень правильно с точки зрения нашей логики, которая не терпит оксиморонов.

Действительные (и комплексные) функции положены в основу математической физики. Но когда физик дифференцирует какую-нибудь функцию f, он лишь определяет через производную как изменяется во времени эта функция, используя точно разработанный языковой аппарат, никак не предполагая при этом, что время является квантовым и дифференциал dt есть тот самый Планковский квант времени, поскольку математический анализ изначально создавался явно или по умолчанию для континуального Риманова пространства. Действительная прямая принимается в математике всюду плотной и состоящей из бесконечно малых величин, которые не равны нулю. Ведь складывать нули бесполезно. Как объединение точек несчетный континуум C можно представить счетным множеством – суммой точек конечной меры (дифференциалов), между которыми есть еще некая неопознанная величина x:

Разумно предположить, что x и есть ничто, нуль. Так что же такое нуль? Он ведь тоже экзистенциален. По крайней мере, мы успешно им пользуемся. И он не дифференциал. Континуум-гипотеза Кантора основана на несчетности континуума C, в то время как его полная упорядоченность, из которой и делается вывод о несчетности с помощью диагонального метода, есть только предположение о том, что любые два числа можно сравнить:

       (3.1)

С другой стороны, факт, что C всюду плотен, может быть выражен аксиомой:

(3.2)



Она гласит, что между любыми двумя сколь угодно близки числами существует по крайней мере еще одно число. Заметим, кстати, что это условие очень похоже на аксиому отделимости (сепарабельности) в топологии, которая в формулировке Хаусдорфа требует, чтобы у любых точек a и b имелись непересекающиеся (замкнутые) окрестности в рассматриваемом пространстве:

              (3.3)

Эта аксиома равносильна утверждению, что пересечение всех окрестностей точки в отделимом пространстве состоит из самой этой точки:

(3.4)

Более обще: отделимое по Хаусдорфу пространство фильтруется, и каждый фильтр в нем стягивается в одну-единственную точку. Обратим внимание на то, что понятие фильтра является обобщением таких понятий как сходимость числового ряда и предел функции, на которые опирается весь математический анализ и соответственно вся физика метрических пространств. Насколько это важно, становится ясно из следующего рассуждения.

Во-первых, отделимое пространство не является строго дизъюнктивным. Континуум С невозможно разделить на две части так, чтобы между ними ничего не было. Точка фильтрации будет точкой прикосновения обеих частей. Как было сказано выше, если С ассоциировать с прямой , то ее невозможно рассечь так, чтобы сечение принадлежало одной части и не принадлежало другой (мы отказываемся от математической хитрости, заключавшейся в том, чтобы делить множество на открытые и замкнутые части, полагая, что обе части должны быть в равных положениях). Пусть нуль есть точка фильтрации. Тогда

или (3.5)

Тут можно задаться «детским» вопросом: нуль – это положительное или отрицательное число? Очевидно, и то, и другое. Или: ни то, ни другое. Для пространства Минковского это значит, что любая точка, из которой выводятся конуса прошлого и будущего, принадлежит обоим конусам: и прошлому, и будущему. Либо не принадлежит ни одному из них. И в какое же небытие проваливается эта точка? Она есть наше настоящее. Что происходит с нашим настоящим, ведь в пространстве Минковского оно оказывается не только t-подобной, но и s-подобной точкой. Пожалуй, эту точку вполне можно назвать сингулярной.

Предположим, что a, b – это физические события во времени, а отношение является причинным, т.е. временным, так что порядок означает: событие а предшествует во времени событию b. Если время t континуально, то согласно (3.2) имеется, по крайней мере, одно неопределенное событие x (потерянное звено) между любыми событиями в причинной цепи: , потому что имеет место временная последовательность: t(a) < t(x) < t(b). Это должно происходить всегда из-за несчетности C вопреки любой причинной плотности, установленной нами для реальности.

Но это делает наше полноценное описание и понимание реальности невозможным, поскольку наше представление о причинности тех или иных событий оказывается произвольным. Мы вполне можем жить в убеждении, что мука способна мгновенно превращаться в хлеб. Нас такое субъективное описание реальности не устраивает. Вернуть себе объективность, на которую мы полагаемся как в теории, так и на практике, можно лишь одним способом: признать, что время (а вместе с ним и пространство) должно быть квантовым (дискретным), но при этом не быть для наблюдателя отделимым (сепарабельным). Феномен несчетности должен быть тогда связан именно с неотделимостью: в «реальном» континууме невозможно чисто изолировать одну точку от другой, так чтобы у них не было общих точек в окрестности.