Страница 6 из 20
Центробежная сила — корабль ведь вращается вокруг Земли — натянет трос. При этом, считают специалисты, магнитное поле нашей планеты наведет в тросе электродвижущую силу (ЭДС) величиной около 600 вольт. Ее, полагает Виктор Благов, можно будет использовать для нужд космических станций.
Однако поначалу важно посмотреть, какой в действительности окажется величина ЭДС, решить другие вопросы.
Если же в трос подавать ток с борта «Мира», то вокруг него возникнет магнитное поле, которое, взаимодействуя с геомагнитным полем планеты, в зависимости от полярности сможет либо повысить высоту орбиты станции, либо понизить.
Величина этой силы скорее всего окажется ничтожно малой, однако при постоянном воздействии даст ощутимые результаты. Но это лишь часть того, что можно получить, используя в космосе такую, казалось бы, обыденную, чисто земную вещь, как трос.
Еще сто лет назад К.Э. Циолковский, описывая в работе «Грезы о Земле и небе» прототип конструкции орбитальной станции с искусственной тяжестью, полагал, что обеспечить ее можно вращением аппарата.
Причем лучше, если такое вращение будет осуществляться не вокруг собственной оси, а вокруг общего центра масс системы «аппарат — противовес», соединенной цепью. Систему, как мы знаем, практически не воссоздали и по сей день. Однако она послужила отправной точкой для дальнейших рассуждений. Пожалуй, первым опытом использования тросовой связки в космической практике был эксперимент, проведенный в 1960 году на американском спутнике «Транзит 1В». Вспомните, как фигурист на льду может менять скорость вращения вокруг собственной оси, то раскидывая руки, то прижимая их к груди…
Точно так же, выбросив на тросе груз, удалось замедлить вращение спутника вокруг продольной оси.
В 1966 году космические корабли «Джемени-11» и «Джемени-12» связывали тросами длиной по 30 м с ракетной ступенью «Анджена». Так впервые в мировой практике в космосе был создан первый орбитальный комплекс. Аналогичный эксперимент планировал в последние годы жизни и конструктор С.П.Королев, но не успел…
Восемь лет спустя научный сотрудник Смитсоновской астрофизической лаборатории при Гарвардском университете (США) Джузеппе Коломбо разработал концепцию привязного зонда, полагая, что со спутника или космического корабля, летящего в безвоздушном пространстве, можно спускать вниз на тросе зонды для исследования верхних слоев атмосферы или фотокамеры для съемки земной поверхности в более крупном масштабе. Просто запустить спутник на столь низкую орбиту нельзя: его затормозят верхние слои атмосферы, заставят опуститься еще ниже, и в конце концов он сгорит.
Впрочем, как показали дальнейшие расчеты, тросовые системы можно использовать не только для стабилизации полета зонда на определенной высоте…
ПРИЧУДЫ МИКРОТЯЖЕСТИ
Как уже сказано, в 1966 году в космосе соединяли тросами две орбитальные ступени «Джемени» с ракетной ступенью «Анджена». При этом выяснили, что попарное соединение двух небесных тел приводит к их стабилизации друг относительно друга растянутым тросом, занимающим вертикальное положение.
Вот почему так происходит.
Равновесное состояние существует только в центре масс связки, где сила притяжения в точности уравновешивается центробежной. Для нижнего же тела притяжение Земли превосходит центробежную силу, влечет его вниз. Для верхнего тела, наоборот, преобладает центробежная сила, и его тянет вверх.
Таким образом система уравновешивается, когда трос занимает положение на прямой, проходящей через верхнюю точку системы и центр Земли. Любое другое положение оказывается неустойчивым, система в конце концов обязательно стабилизируется именно таким образом.
Расчет показывает: если соединить две примерно одинаковые по массе платформы достаточно длинным (до 40 км) тросом, то экипажи внутри модулей смогут отличать верх от низа.
Вместо безразличной невесомости у них появится микрогравитация, составляющая примерно 1 % от земной. Конечно, величина небольшая, но уже достаточная для того, чтобы предметы перестали плавать по кабине, появились понятия «пол» и «потолок». Причем интересно, что с точки зрения наземного наблюдателя обитатели верхней платформы будут существовать «вверх ногами» — пол у них будет выше потолка, поскольку там микротяжесть действует в обратную сторону. На нижней же платформе все будет выглядеть привычным образом: скажем, капля воды из стакана медленно, но верно будет опускаться к Земле.
БОЛЬШОЙ СЕКРЕТ ДЛЯ МАЛЕНЬКОЙ КОМПАНИИ
Расчеты — расчетами, но как дело с тросовыми системами обстоит на практике? Чтобы ответить на этот вопрос, в марте 1996 года на борту космического «шаттла» «Колумбия» был проведен эксперимент, который не привлек особого внимания средств массовой информации.
Во-первых, наверное, потому, что выполнялся он по заказу не только NASA, но и NRO — Национального отделения средств разведки. Во-вторых, из-за того, что похвалиться его завершением астронавты не смогли: в самый ответственный момент оборвался трос, соединявший два небесных тела, и одно из них было потеряно безвозвратно.
Тем не менее, факт остается фактом: помедлив до осени, NRO впервые за свою 35-летнюю историю все же поведало некоторые подробности проведенных исследований: 400 тыс. долларов были потрачены на то, чтобы убедиться в принципиальной возможности получения электроэнергии в космосе с помощью тросовых систем.
ТРОС В РОЛИ ДИНАМО
Наверное, стоит на время прервать рассказ о заокеанских экспериментах, чтобы напомнить об одной работе российских ученых. В 1990 году доктор физико-математических наук Владимир Белецкий и кандидат физико-математических наук Евгений Левин опубликовали статью, в которой подробно описали возможные применения тросовых систем. Среди прочего речь там шла и о том, что с помощью электропроводящих тросов в космосе можно осуществлять в высшей степени интересные эксперименты по получению электроэнергии.
Как же они будут происходить? Скажем, астронавты откроют люк грузового отсека орбитального космолета. В нем находится лебедка и приемная штанга длиной около 10 м. Субспутник на тросе выпустят вверх. Из него в разные стороны выдвинут электрические датчики «Можно ли пропускать по такому тросу постоянный ток? — продолжали исследователи рассуждения. — Казалось бы, нет. Цепь не замкнута. Но ведь он движется в проводящей ионосферной плазме. Ток, текущий по тросу, может замыкаться через окружающую среду. Для этого на концах троса должны быть установлены специальные контактные устройства».
Прервем цитату, чтобы отметить прозорливость наших исследователей. Все именно так и происходило на самом деле 25 февраля 1996 года, когда челнок «Колумбия» после выхода на орбиту выпустил из своего грузового отсека спутник.
По мере того, как оба искусственных тела расходились друг от друга, между ними возникал электрический потенциал. Дело в том. что когда два тела находятся на разных высотах в ионосфере Земли, то на них в единицу времени падают неравные потоки заряженных частиц ионосферной плазмы и поверхности тел заряжаются по-разному.
В эксперименте удалось получить силу тока 0,5 ампера при напряжении 3500 вольт. Вероятно, эти результаты удалось бы еще улучшить, но, как уже сказано, оборвался трос длиной около 20 км, связывающий челнок и спутник, и эксперимент пришлось прервать. Тем не менее и достигнутого хватило для того, чтобы убедить заказчика провести серию дальнейших опытов. «Тот факт, что измеренная сила тока оказалась втрое больше расчетной, сулит хорошие перспективы применения данного метода для получения энергии на околоземной орбите даже тогда, когда космический аппарат находится в тени планеты и его солнечные батареи работать не могут», — заявил ведущий научный специалист проекта из Центра космических полетов им. Дж. Маршалла Ноби Стоун.
ИСТОЧНИК ЭНЕРГИИ XXI ВЕКА?..