Страница 10 из 21
(2.46)
Можно понять, как это получается, если расписать одну из компонент:
что равно нулю [по уравнению (2.8)]. Это же верно и для других компонент. Стало быть, СХ(СT)=0 для любого распределения температур, да и для всякой скалярной функции.
Возьмем второй пример. Посмотрим, нельзя ли получить нуль другим путем. Скалярное произведение вектора на векторное произведение, содержащее этот вектор, равно нулю
А·(АХВ) = 0, (2.48)
потому что АХВ перпендикулярно к А и не имеет тем самым составляющих вдоль А. Сходная комбинация стоит в списке (2.45) под номером (г):
С(СXh) = div(roth) = 0. (2.49)
В справедливости этого равенства опять-таки легко убедиться, проделав выкладки на компонентах.
Теперь сформулируем без доказательства две теоремы. Они очень интересны и весьма полезны для физиков.
В физических задачах часто оказывается, что ротор какой-то величины (скажем, векторного поля А) равен нулю. Мы видели в уравнении (2.46), что ротор градиента равен нулю. (Это легко запоминается по свойствам векторов.) Далее, может оказаться, что А будет градиентом какой-то величины, потому что тогда ротор А с необходимостью обратится в нуль. Имеется интересная теорема, утверждающая, что если ротор А есть нуль, то тогда А непременно окажется чьим-то градиентом; существует некоторое скалярное поле ш; (пси), такое, что A=gradш. Иными словами, справедлива
Т Е О Р Е М А
Если СXА = 0,
то имеется ш, (2.50)
такое, что А = Сш.
. Сходная теорема формулируется и для случая, когда дивергенция А есть нуль. Из уравнения (2.49) видно, что дивергенция ротора любой величины равна всегда нулю. Если вам случайно встретилось векторное поле D, для которого div D — нуль, то вы имеете право заключить, что D это ротор некоторого векторного поля С.
ТЕОРЕМА
Если С·D = 0,
то имеется С, (2.51)
такое, что D = СXC.
Перебирая всевозможные сочетания двух операторов у, мы обнаружили, что два из них всегда дают нуль. Займемся теперь теми, которые не равны нулю. Возьмем комбинацию С· (СT), первую в нашем списке. В общем случае это не нуль. Выпишем компоненты
Далее,
(2.52)
что может, вообще говоря, быть любым числом. Это скалярное поле.
Вы видите, что скобок можно не ставить, а вместо этого писать, не рискуя ошибиться:
(2.53)
Можно рассматривать С2 как новый оператор. Это скалярный оператор. Так как он в физике встречается часто, ему дали особое имя — лапласиан.
(2.54)
Раз оператор лапласиана —оператор скалярный, он может действовать и на вектор. Под этим мы подразумеваем, что он применяется к каждой компоненте вектора
Рассмотрим еще одну возможность: СX(СX h) [(д) в списке (2.45)]. Ротор от ротора можно написать иначе, если использовать векторное равенство (2.6)
АX(ВXС) = В(А·С)-С(А·В). (2.55)
Заменим в этой формуле А и В оператором у и положим C=h. Получится
СX(СXh) = С(Сb)-h(С·С)...???
Погодите-ка! Здесь что-то не так. Как и положено, первые два члена — векторы (операторы утолили свою жажду), но последний член совсем не такой. Он все еще оператор. Ошибка в том, что мы не были осторожны и не выдержали нужного порядка членов. Вернувшись обратно, вы увидите, что (2.55) можно с равным успехом записать в виде
АX(ВXС) = В(А·С) -(А·В)С. (2.56)
Такой порядок членов выглядит уже лучше. Сделаем нашу подстановку в (2.56). Получится
СX (СXh) = С (Сh)-( С·С)h. (2.57)
С этой формулой уже все в порядке. Она действительно правильна, в чем вы можете убедиться, расписав компоненты. Последний член — это лапласиан, так что с равным успехом можно написать
СX (СXh) = С(С·h)- С2h. (2.58)
Из нашего списка (2.45) двойных С мы разобрали все комбинации, кроме (в), С(С·h). В ней есть смысл, это — векторное поле, но больше сказать о ней нечего. Это просто векторное поле, которое может случайно возникнуть в каком-нибудь расчете.
Удобно будет все наши рассуждения свести теперь в таблицу:
(2.59)
Вы могли заметить, что мы не пытались изобрести новый векторный оператор СХС. Понимаете, почему?
§ 8. Подвохи
Мы применили наши знания обычной векторной алгебры к алгебре оператора y Здесь нужно быть осторожным, иначе легко напутать. Нужно упомянуть о двух подвохах (впрочем, в нашем курсе они не встретятся). Что можете вы сказать о следующем выражении, куда входят две скалярные функции ш и j (фи):
Вы можете подумать, что это нуль, потому что оно похоже на
(Аa)X(Аb),
а это всегда равно нулю (векторное произведение двух одинаковых векторов АXА всегда нуль). Но в нашем примере два оператора С отнюдь не одинаковы! Первый действует на одну функцию, ш, а второй — на другую, j. И хотя мы изображаем их одним и тем же значком у, они все же должны рассматриваться как разные операторы. Направление Сш зависит от функции ш, а направление Сj — от функции j, так что они не обязаны быть параллельными:
(Сш)X(Сj)№0 (в общем случае).
К счастью, к таким выражениям мы прибегать не будем. (Но сказанное нами не меняет того факта, что СjXСш =0 в любом скалярном поле: здесь обе Сдействуют на одну и ту же функцию.) Подвох номер два (он тоже в нашем курсе не встретится): правила, которые мы здесь наметили, выглядят просто и красиво только в прямоугольных координатах. Например, если мы хотим написать x-компоненту выражения С2h, то сразу пишем
(2.60)
Ио это выражение не годится, если мы ищем радиальную компоненту С2h. Она не равна С2hr. Дело в том, что в алгебре векторов все их направления полностью определены. А когда мы имеем дело с векторными полями, то их направления в разных местах различны. Когда мы пробуем описать векторное поле, например, в полярных координатах, то «радиальное» направление меняется от точки к точке. И начав дифференцировать компоненты, вы запросто можете попасть в беду. Даже в постоянном векторном поле радиальная компонента от точки к точке меняется.
Обычно безопаснее и проще всего держаться прямоугольных координат. Но стоит упомянуть и одно исключение: поскольку лапласиан С2 есть скаляр, то можно писать его в любой системе координат (скажем, в полярных координатах). Но так как это дифференциальный оператор, то применять его надо только к векторам с фиксированным направлением компонент, т. е. к заданным в прямоугольных координатах. Итак, расписывая наши векторные дифференциальные уравнения покомпонентно, мы будем предварительно выражать все наши векторные поля через их х-, у-, z-компоненты.
* В наших обозначениях выражение (а, b, с) представляет вектор с компонентами а, b, с. Если вам нравится пользоваться единичными векторами i, j и k, то можно написать