Страница 6 из 82
Глава II. О кусочке мела
Шут: …Любопытна причина, по которой в семизвездье семь звезд, а не больше.
Лир: Потому что их не восемь?
Шут: Совершенно верно. Из тебя вышел бы хороший шут…
Ученые сделали множество необычных и прекрасных открытий. Возможно, самым прекрасным и самым необычным из них является открытие структуры самой науки. Наши научные достижения – не разрозненный набор изолированных фактов; одно научное обобщение находит свое объяснение в другом, которое в свою очередь вытекает из следующего. Прослеживая эти стрелки объяснений назад к их источникам, мы обнаруживаем поразительную сходящуюся структуру. Может быть, это и есть глубочайшая из всех истин, постигнутых нами при изучении Вселенной.
Рассмотрим кусочек мела. Это вещество знакомо большинству людей (особенно физикам, которые общаются друг с другом с помощью доски), но я выбрал мел в качестве примера потому, что он явился в свое время объектом полемики, ставшей знаменитой в истории науки. В 1868 г. Ассоциация британских ученых проводила свое ежегодное собрание в большом городе Норвич, главном городе графства на востоке Англии. Для ученых и студентов, собравшихся в Норвиче, это было волнующим событием. В те годы внимание общественности было привлечено к науке не только из-за ее очевидной важности для развития техники, но в еще большей степени из-за того, что наука изменяла взгляды людей на мир и их место в нем. Публикация девятью годами ранее сочинения Дарвина «О происхождении видов путем естественного отбора» резко противопоставила науку доминирующей религии того времени. На собрании присутствовал Томас Генри Хаксли – выдающийся анатом и яростный спорщик, которого современники прозвали «бульдогом Дарвина». Как это часто бывало и ранее, Хаксли воспользовался случаем, чтобы выступить перед гражданами города. Он назвал свою лекцию «О кусочке мела»[11]
Я представляю себе Хаксли стоящим на трибуне и держащим в руках кусочек мела, может быть отломанный им от тех залежей, которые простираются под городом Норвичем, или одолженный у знакомого плотника, а может, у какого-нибудь профессора. Он начал свою лекцию с описания того, как слой мела на глубине в несколько сотен футов простирается не только под большей частью Англии, но и под всей Европой и странами Леванта, вплоть до Центральной Азии. Мел в основном состоит из простого химического вещества, называемого на современном языке карбонатом кальция, однако микроскопическое исследование показывает, что в нем содержится бесчисленное множество скелетов крохотных существ, населявших те древние моря, которые покрывали когда-то Европу. Хаксли живо описывал, как в течение миллионов лет эти скелетики оседали на дно моря и спрессовывались в мел, как то здесь, то там в эти отложения попадали скелеты более крупных животных, похожих на крокодила, причем при переходе к более глубоким слоям мела эти животные выглядят все более непохожими на своих современных потомков, и следовательно они должны были эволюционировать все те миллионы лет, пока мел оседал.
Хаксли пытался убедить присутствующих, что мир гораздо старше, чем те шесть тысяч лет, которые отведены ему последователями Библии, и что новые живые существа появлялись и эволюционировали с самого начала. Все эти утверждения сейчас общеприняты – никто, имеющий хоть малейшее представление о науке, не сомневается в большом возрасте Земли или реальности эволюции. То, что я хочу обсудить, не имеет никакого отношения к конкретному разделу научного знания, а относится к тому, как все эти знания связаны друг с другом. Именно поэтому я, как и Хаксли, начну с кусочка мела.
Мел белый. Почему? Один ответ, который можно дать сразу, таков: мел белый потому, что он не какого-то другого цвета. Такой ответ безусловно понравился бы лировскому шуту, но на самом деле он не так уж далек от истины. Уже во времена Хаксли знали, что каждый цвет в радуге связан со светом определенной длины волны – более длинные волны соответствуют красному концу спектра, более короткие – голубому. Белый свет рассматривался как смесь света многих разных цветов. При падении света на непрозрачное вещество вроде мела только часть его отражается, а другая часть поглощается. Вещество определенного цвета, например зелено-синего, присущего многим соединениям меди (медно-алюминиевые фосфаты в турмалине) или синего, характерного для соединений хрома, имеет такой цвет потому, что вещество поглощает свет строго определенных длин волн; цвет, который мы видим в свете, отраженном от вещества, связан со светом тех длин волн, которые поглощаются не слишком сильно. Оказывается, что карбонат кальция, из которого и состоит мел, особенно сильно поглощает свет только в области инфракрасных и ультрафиолетовых длин волн, все равно не видимых глазом. Поэтому свет, отраженный от куска мела, имеет практически такое же распределение по длинам волн видимого света, как и свет, падающий на мел. Благодаря этому и возникает ощущение белизны, будь то у мела, облака или снега.
Почему? Почему некоторые вещества сильно поглощают видимый свет определенных длин волн, а другие нет? Оказывается, ответ связан со сравнительными энергиями атомов и света. Ученые начали понимать это после работ Альберта Эйнштейна и Нильса Бора, сделанных в первые два десятилетия ХХ в. Эйнштейн в 1905 г. впервые понял, что световой луч состоит из потока колоссального количества частиц, позднее названных фотонами. У фотонов нет ни массы, ни электрического заряда, но каждый фотон обладает определенной энергией, величина которой обратно пропорциональна длине волны света. В 1913 г. Бор предположил, что атомы и молекулы могут существовать только в определенных состояниях, т.е. стабильных конфигурациях, обладающих определенной энергией. Хотя атомы часто сравнивают с миниатюрными Солнечными системами, все же существует принципиальное различие. Любой планете Солнечной системы можно придать чуть больше или чуть меньше энергии, просто подвинув ее чуть дальше от Солнца или, наоборот, придвинув к нему. Но состояния атома дискретны – мы не можем изменять энергии атомов иначе, как на определенную конечную величину. Обычно атом или молекула находятся в состоянии с наименьшей энергией. Но, поглощая свет, они перескакивают из состояния с наименьшей энергией в одно из состояний с большей энергией (при испускании света происходит обратный процесс). Если объединить идеи Эйнштейна и Бора, то получается, что свет может поглощаться атомом или молекулой, только если длина волны света принимает определенное значение. Эти определенные длины волн отвечают таким энергиям фотонов, которые как раз равны разности энергий между начальным состоянием атома или молекулы и одним из состояний с большей энергией. В противном случае при поглощении фотона атомом или молекулой не сохранялась бы энергия. Типичные соединения меди имеют зелено-синий цвет, потому что существует определенное состояние атома меди, обладающее энергией, на два электрон-вольта6) большей, чем энергия нормального состояния атома. Поэтому атом особенно легко перепрыгивает в состояние с большей энергией, поглотив фотон с энергией 2 эВ. Длина волны такого фотона равна 0,62 мкм, что соответствует красно-оранжевому цвету, так что после поглощения этого фотона оставшийся отраженный свет имеет зелено-синий оттенок[12]. (Приведенное рассуждение – не просто крайне сложный способ объяснить то, что мы и так знаем про зелено-синий цвет соединений меди; подобная структура энергетических состояний атомов меди проявляется и тогда, когда они получают извне энергию другими способами, например, от пучка электронов.) Мел имеет белый цвет потому что у молекул, из которых он состоит, оказывается, нет таких уровней энергии, куда можно легко перепрыгнуть, поглощая фотоны любого цвета из видимого света.