Добавить в цитаты Настройки чтения

Страница 35 из 44

В УВИС заряд взрывчатого вещества с рабочим телом 1 размещается внутри детонационного распределителя 2 — шарового слоя из поликарбоната — уменьшенной копии важной детали ядерного заряда. Плотность точек инициирования на заряде УВИС больше, чем на поверхности ядерного заряда, поскольку диаметр излучателя намного меньше, чем плутониевой сборки. Поэтому разводку в УВИС иногда делают «двухэтажной» — верхний «этаж», с меньшим числом точек инициирования, размещается над основной разводкой и возбуждает детонацию в узловых точках последней, а та — в заряде. Внутри заряда — шарового слоя мощного взрывчатого состава на основе октогена — устанавливается шар, выточенный из монокристалла.

Вокруг шара собирается магнитная система. В ее основе — два постоянных магнита, от которых к монокристаллу идут два усеченных конуса 3 из магнитно-мягкой стали, «собирающие» поле постоянных магнитов в область, занятую рабочим телом. Сохранению потока, создаваемого магнитами, служат и магнитопроводы 4. Кристалл устанавливается в центре системы так, чтобы его главная ось совпадала с направлением магнитного поля, иначе различия в свойствах вдоль других осей могут нарушить симметрию сжатия.

Но вот устройство собрано. Сработал детонатор. Со скоростью около 8 км/с огоньки детонации, многократно разветвляясь, разбегаются по каналам, одновременно ныряют в десятки отверстий и инициируют сферическую детонацию с давлением в полмиллиона атмосфер. Достигнув поверхности шара из иодида цезия, волна детонации формирует в нем ударную волну, причем, поскольку импеданс монокристалла больше, чем газов взрыва, давление на его поверхности увеличивается, превышая миллион атмосфер. Сферическая ударная волна мчится к центру со скоростью более 10 км/с, сжимая магнитное поле и оставляя за собой уже не монокристалл, а проводящую как металл жидкую мешанину из плазмы йода и цезия В конечной фазе отношение размера области сжатия к начальному значению радиуса монокристалла — менее одной тысячной. Сохранись при сжатии весь поток — и энергия магнитного поля могла бы возрасти при этом в триллион (миллион миллионов) раз! Но на самом деле, и при цилиндрической и при сферической магнитной кумуляции в монокристалле сжимается лишь мизерная часть поля, а остальное — «выбрасывается» за фронт ударной волны.

Если заряд собран правильно, то ударная волна, сойдясь в точку и отразившись, устремится обратно; скачком и очень существенно изменится магнитный момент области сжатия, что и приведет к генерации импульса РЧЭМИ. За доли наносекунды поле меняется, конечно же, не по закону синуса с периодом равным времени сжатия-разрежения, а более резко, а это значит, что в функции, описывающей его изменение, существенны вклады многих частот. Спектр излучения, приведенный на рис. 4.34 может вызвать и недоумение: для какой частоты выход РЧЭМИ максимален, и что это за единицы — «джоули на герц»? Джоули на герц — единицы спектральной плотности энергии, ими пользуются, когда описывают непрерывные спектры излучения (континуумы) в которых присутствует огромное число частот. Проинтегрируем график численно в пределах заинтересовавшего нас диапазона — получим привычные джоули, причем тем больше, чем в более высокочастотном диапазоне ведется интегрирование. Частоты же берутся вот откуда.

…Представим, что, находясь в уличной «пробке», мы плавно тронули свою машину и притормозили у стоящей впереди. В следующий раз, едва мы сняли ручник, в нас «въехали» сзади; доли секунды — и мы «целуем» стоящую впереди. Как пройденные расстояния, так и времена движения в обоих случаях близки, но ваш организм подсказывает, что в элементах движения имелись и отличия: в последнем случае он сначала «ускорился», как от сильного пинка, потом — парил, блаженствуя, и, наконец — «замедлился», как бы упав. Подсознательно сложное движение представлено, как сумма более простых. Это и есть задача гармонического анализа, основы которого заложил французский математик Симон Фурье: любая функция может быть представлена как сумма синусоид (гармоник). Вообще-то можно произвести разложение и в ряд других функций, не синусов, но для расчета эмиссии РЧЭМИ удобны именно они, потому что эта задача для тока синусоидальной формы, протекающего через кольцо, давно решена. Именно на гармониках больших частот («быстрых») и реализуется основной выход излучения.

…Огромное преимущество магнитов — их постоянное во времени поле не нуждается в синхронизации со взрывными процессами и может быть измерено еще до того момента, когда сборку разнесет на мелкие осколки. Средства измерения известны — преобразователи Холла[46]. Однако для работы таких преобразователей необходимы высокостабильные источники питания, а этим последним требуется сеть напряжением 220 В, избавленная от «бросков» — сложная задача для условий высокогорного полигона, где лампочки «мигают» довольно заметно. Запитку датчика Холла сделали «импульсной» от разряда электролитического конденсатора большой (десятки микрофарад) емкости. Заряжается этот конденсатор хоть от даже не совсем «свежих» батареек. На лучи осциллографа выводятся два сигнала (рис. 4.35): один — питающего датчик напряжения, другой — с самого датчика. Для снятия показаний достаточно выбрать на луче питания регламентированное значение напряжения питания датчика и, переведя маркер на другой луч — прочитать значение ЭДС Холла в этот момент времени. Осциллографы всегда пользуются большими «привилегиями» и обеспечиваются электропитанием от стабилизаторов, а в коробочке, где смонтирован прибор, имеется кусочек постоянного магнита — эталон поля.





…«Доведенные» УВИС продемонстрировали надежную и стабильную работу, но сложность сборки и наличие весьма дорогой в производстве сферической детонационной разводки повышали их стоимость до уровня, немыслимого для неядерных боеприпасов. Прототип электромагнитного боеприпаса — 105 мм реактивная граната с боевой частью на основе УВИС (рис. 4.36) — был создан и успешно испытан, но такой боеприпас не имел шансов стать массовым: его можно применять только в особо ответственных случаях, для поражения важных целей, а на поле боя нужно другое оружие — «числом поболее, ценою подешевле». Параллельно с ударно-волновыми излучателями, разрабатывались и генераторы частоты…

Как мы знаем, магнитный поток «выпустить» непросто — надо разорвать контур тока — например, взрывающегося ВМГ — да еще успеть изолировать разрыв. Но можно создать изолированный разрыв заранее (рис. 4.37), включив в контур высоковольтный конденсатор 1, соединив его с медной трубой 2 (снаряженной ВВ 3) и соосной трубе спиралью 4. Как и в СВМГ, взрыв расширяет трубу, образуя конус, который и ударяет по обмотке, вызывая протекание тока от заранее заряженного конденсатора. Далее точка контакта на основании конуса движется по виткам спирали, продавливая их изоляцию и закорачивая виток за витком, усиливая при этом ток, который осциллирует (рис. 4.38а), так как емкость контура существенна. Иногда обмотку такого генератора (он получил название взрывомагнитного генератора частоты, ВМГЧ) делают из нескольких проводов, подсоединяя каждый к отдельному конденсатору: из-за рассогласования токов в проводах, излучение рассеивается в этом случае более равномерно. Оценив период колебаний (для единиц микрогенри и нанофарад), получим сотни наносекунд, что не очень благоприятно (волны в сотни раз «длиннее» самого ВМГЧ). Но эти «несущие» волны — не основные в излучении: компрессия поля трубой, усиливая ток тем больше, чем выше его мгновенное значение, приводит к появлению «быстрых» гармоник. При каждой осцилляции тока меняется и состав этих гармоник, что естественно — ведь меняются и параметры контура. Так что излучает ВМГЧ не один импульс, а «цуг» — число импульсов РЧЭМИ в такой последовательности равно числу полуволн тока.

46

Ток не только создает собственное магнитное поле, но и взаимодействует с полем внешним, следствием чего является генерация ЭДС. Если металлическую пластинку, вдоль которой протекает постоянный ток, поместить в перпендикулярное к ней магнитное поле, то на краях пластины возникнет разность потенциалов, называемая по имени первооткрывателя этого эффекта. Измерив ее и зная ток, вычисляют напряженность поля. Важно только, чтобы не «вмешивался» скин-эффект — тогда распределения тока и поля будут неравномерными, а результаты измерений — недостоверными. Конденсатор большой емкости нужен для того, чтобы запитывающие преобразователь токовые импульсы были достаточно длительными и скин-эффект не проявлялся