Добавить в цитаты Настройки чтения

Страница 17 из 44

Оружейник-ядерщик, мельком взглянув на характеристики «сферы» скажет, не раздумывая: сборка изготовлена для заряда, где одно поколение быстрых нейтронов сменяется другим, более многочисленным, за неимоверно короткое, неуловимое живыми существами время. Не будучи окружена замедлителем, «сфера» была подкритичной, безопасной. То, что авария носила «невзрывной» характер, объясняется только тем, что процесс, начавшись либо с нейтрона, рожденного спонтанным делением плутония, либо со случайно попавшего в сборку «фонового[18]» нейтрона, далее происходил на частицах, каждое поколение которых долго замедлялось до тепловых скоростей. Деление прекратилось, когда сборка раскалилась, а значит — расширилась. Если физик затем действительно начал действовать руками, то это предотвратило два неприятных последствия: другую вспышку делений после остывания сборки и загрязнение всего окружающего плутонием, который, раскалившись, мог и сбросить с себя защитную оболочку из никеля[19].

Вероятно, целью опыта являлось выяснение, безопасно ли монтировать сборку в заряд, окружая при этом замедляющим нейтроны бериллием. Пошли на жутковатый эксперимент потому, что и в те времена, и сейчас далеко не все, что необходимо для реализации новых идей, поддается расчету: значения многих важных величин неизвестны. Упоминание «ослепительного блеска» следует отнести на счет эмоциональной реакции свидетелей аварии. На самом деле, это было неяркое фиолетовое свечение ионизованного гамма квантами воздуха (обычно в такой ситуации ощущается и сильный запах озона).

…Нейтроны играют настолько важную роль в ядерных реакциях и их практическом применении, что очевидна необходимость закрепить у читателя представления о динамике их замедления и взаимодействии с другими ядрами. Ясно, что лучше сделать это, не «пережевывая» вновь уже изложенное. К сожалению, эти частицы не вполне безопасны для человека, поэтому нельзя рекомендовать любителю изучить их свойства на установке вроде той, которая формировала кумулятивную струю из воды. Остается надежда, что делу поможет описание опыта, проведенного в годы работы молодым специалистом во НИИ авиационной автоматики. Работал автор с ускорительным источником — нейтронным генератором. Далее опишу его поподробнее, а пока важно лишь то, что формировал этот генератор импульсный нейтронный поток микросекундной длительности.

…Идея пришла неожиданно. Сопоставив длительность формируемого нейтронного импульса (менее микросекунды) и время замедления нейтронов (миллисекунды), автор понял, что, если окружить генератор замедлителем и сформировать импульс, то из замедлителя сначала выйдут нейтроны, испытавшие малое число столкновений, а значит — довольно высокоэнергетичные, потом — «потолкавшиеся подольше», подрастерявшие свою энергию, и уж затем — тепловые. Если для визуализации изображения применить электронно-оптический преобразователь (ЭОП), то, запуская его с определенной задержкой по отношению к началу нейтронного импульса, можно менять и энергию частиц, используемых для контроля. Это сулило прямо-таки революционное расширение возможностей нейтронографии: определив ход зависимостей от энергии нейтронов яркости свечения изображений различных деталей исследуемого объекта, можно идентифицировать вещество, из которого изготовлена деталь, потому что яркость пропорциональна сечению взаимодействия нейтронов (рис. 3.5), которое для каждого элемента весьма индивидуально зависит от их энергии. Причем, появлялась возможность проявления деталей из легких элементов — задача, непосильная методу рентгеновского контроля!

После выяснения, в каких подразделениях института есть подходящее оборудование, пришлось обратился в лабораторию, занимавшуюся регистрацией гамма-излучений ядерных взрывов. Подобные подразделения считались вспомогательными, не были избалованы вниманием начальства и их руководители стремились наладить прочные связи с подразделениями «основной тематики». «Нейтронная» тематика считалась основной, поэтому меня радушно приняли и рассказали о достижениях, в частности — о системе спектроскопии гамма квантов, показали огромные монокристаллы йодида цезия в специальных контейнерах и фотоэлектронные умножители, регистрирующие вспышки в кристаллах, порожденные гамма квантами. Подобное было памятно еще по институтским лабораторным работам, но здесь уровень аппаратуры был куда более высок, а контейнеры с самыми большими монокристаллами можно было поднять лишь обеими руками. Я вспомнил о существовании таких монокристаллов десятилетие спустя, а тогда стал задавать вопросы об ЭОПах. Оказалось, что и они имелись.

Настал и мой черед рассказать о задаче. Тут лица собеседников вытянулись от разочарования: тематика хотя и была «нейтронной», но не оружейной, а значит — не главной. Аппаратуру дать взаймы отказались, но компромисс был достигнут: разрешили, чтобы с ней работал их техник, «а уж вы с ним сами договоритесь». «Договаривались» в таких ситуациях при помощи спирта. Техник оказался веселым и знающим малым, наладив аппаратуру и получив, что причиталось, он заходил потом лишь изредка, проверяя только наличие всех приборов.

Технологические возможности института позволили изготовить конвертер (преобразователь нейтронного излучения в световое), смешав бор, сульфид цинка и «связав» смесь полиэтиленом. При захвате нейтронов ядрами бора получались альфа-частицы, которые и вызывали вспышки света в сульфиде цинка.





Вскоре начались плановые испытания генераторов на полный ресурс. «Гоняя» генераторы, попутно облучали патрон и не минуту, не час, а почти неделю! Результаты не радовали: на экране виделись лишь отдельные вспышки. Чтобы не подвергать риску быть «экспроприированным» фотоаппарат, срочно изготовили из фанеры кассету, прижимавшую к экрану кусок аэрофотопленки. И результат был получен: пленки, экспонированные при задержке запуска ЭОПа и без нее заметно отличались, что свидетельствовало об изменении средней энергии нейтронов, на которых велся контроль (рис. 3.6)! Низкоэнергетичные нейтроны позволили обнаружить и порох, что было недоступно для нейтронов быстрых, а уж тем более — для рентгена. Неважно, что изображения были получены после недельного коллекционирования отдельных вспышек! Неважно, что компоненты конвертера оказались смешанными явно неравномерно! Главное — работал принцип!. А если так, то, применив более мощный источник нейтронов (например — импульсный реактор), можно было, лишь «просветив» предмет снаружи, узнать не только его устройство, но и изотопный состав любой его детали по выбору: достаточно было укрепить на ее изображении фотоэлемент и получить зависимость его показаний от величины задержки запуска ЭОПа (а значит — и от энергий нейтронов). Ясно, что тут требовались сложные расчеты эффективности конвертера для нейтронов разных энергий, экранирования одного материала другим, по все эго было под силу ЭВМ, только входившим тогда в обиход научных учреждений…

…В НИИ авиационной автоматики (НИИАА, позднее — ВНИИА) автор попал по распределению — для выполнения дипломной работы. Чтобы понять принципы действия «авиационной автоматики», вернемся к нашим сборкам.

18

Где бы вы не находились, такие нейтроны присутствуют рядом с вами. Их приносит излучение из космоса, они образуются в результате ядерных реакций в содержащихся в земле минералах. К счастью, «фоновых» нейтронов не так уж много

19

Плутоний очень ядовит. Контакта человека с плутонием стараются избежать, никелируя детали из этого вещества. Попадание в организм бериллия тоже пользы не принесет