Добавить в цитаты Настройки чтения

Страница 7 из 31



Установив истинную форму Земли, можно было подтвердить правоту Ньютона или Декарта. Париж в эти годы стал центром притяжения европейских математиков. В 1733 году астроном Луи Годэн (1704-1760) предложил измерить длину градуса меридиана на уровне экватора. В следующем году с этой целью в вице-королевство Перу, находившееся под властью испанской короны, направилась экспедиция. Одновременно Пьер Луи Моро де Мопертюи (1698-1759), ассистент математика Алекси Клода Клеро (1713-1765), осуществил экспедицию в Лапландию, чтобы измерить длину градуса меридиана на уровне Северного полюса. Вернувшись в Париж даже раньше предусмотренного срока, 13 ноября 1737 года оба исследователя торжественно заявили перед Академией наук, что в результате измерений был подтвержден тот факт, что Земля имеет форму сфероида, приплюснутого на полюсах. Таким образом, прав оказался Ньютон.

Слева: Земля согласно Ньютону в форме тыквы. Справа: Земля согласно Декарту в форме дыни.

Сторонники Ньютона выиграли важную битву, но еще не всю войну. Декарт, с его вихрями и невидимыми тонкими материями, объяснял все, но ничего не предсказывал. А вот Ньютон, напротив, с его законом притяжения, мог предвидеть многое, но почти ничего не объяснял. Происхождение силы тяготения оставалось загадкой, но возможность использовать теорию Ньютона для прогнозирования позволила этому ученому одержать победу над Декартом. С этого момента на первый план в науке выходит эффективность.

Однако вопрос о форме Земли не был решен окончательно. Выяснилось, что хотя планета и приплюснута на полюсах, она не имеет четкой формы сфероида. Ее вид постоянно меняет сила тяготения, пример тому — отливы и приливы. Начиная с этого момента исследования силы тяготения расширялись.

В январе 1783 года молодой математик Адриен Мари Лежандр представил членам Академии результаты своей работы, касавшейся воздействия силы тяготения на сфероиды. Лапласу поручили прочитать эту работу и составить ее краткое резюме. В марте ученый представил Академии восторженный отчет. Безусловно, работа Лежандра побудила Лапласа начать собственные исследования этого вопроса. Немного позже он представил любопытный доклад — первую публикацию под собственным именем {«Теория притяжения сфероидов и фигуры планет», 1784), в которой обобщал наработки Лежандра, хотя и ни разу не ссылался на него. Лаплас проявлял подобную бестактность еще до вступления в Академию, когда позаимствовал идеи Эйлера и Лагранжа, не упоминая их имен. И этот случай не будет последним. Лаплас опубликовал свою работу раньше, чем Лежандр, который подчеркивал:

«Должен отметить, что дата моего сочинения более ранняя, и новое доказательство позволило господину Лапласу углубить это исследование». Что же такого было в работе Лежандра, сразу заинтересовавшей Лапласа? Именно в этом труде впервые было упомянуто то, что сегодня называют многочленами Лежандра (и что несправедливо называли функциями Лапласа в течение доброй части XIX века), — специальные функции, появляющиеся при решении дифференциальных уравнений. Точнее, они появлялись в решении одного уравнения, важного для небесной механики, которое мы сегодня называем уравнением Лапласа.

«Если француз приедет в Лондон, он найдет здесь большое различие в философии, а также во многих других вопросах. В Париже он оставил мир, полный вещества, здесь он находит его пустым. В Париже Вселенная заполнена эфирными вихрями, тогда как тут, в том же пространстве, действуют невидимые силы. В Париже давление Луны на море вызывает отлив и прилив — в Англии же, наоборот, море тяготеет к Луне. У картезианцев все достигается давлением, что, по правде говоря, не вполне ясно, у ньютонианцев все объясняется притяжением, что, однако, немногим яснее. Наконец, в Париже Землю считают вытянутой у полюсов, как яйцо, а в Лондоне она сжата, как тыква...»

Лапласианом называют оператор, являющийся обобщением на функции w = f(x, у, z, t) координат пространства и времени и равный сумме вторых производных функции от х, у, z:

Δw = d²w/dx²+ d²w/dy² + d²w/dz².

Лаплас посвятил много времени решениям дифференциальных уравнений математической физики, в которой появилась эта формула. Три из этих уравнений по-настоящему важны.



— Δw=0: уравнение Лапласа, которое отражает тот факт, что совершенное жидкое тело, в котором нет потока, является неразрушимым. Это уравнение математическим способом представляет очевидный факт: если жидкое тело является неразрушимым, количество жидкости, которая выходит в любом малом объеме и за данный промежуток времени, и то количество жидкости, которое в нем остается, — идентичны. Однако, когда это уравнение подвергается математическому рассмотрению, оно приводит к неожиданным выводам, которые далеки оттого, чтобы быть прописной истиной, и позволяют сделать некоторые прогнозы. Лаплас открыл это уравнение, когда изучал потенциал притяжения (функция, измеряющая силу притяжения, посредством которой тело любой формы притягивает определенную массу).

— Уравнение распространения тепла:

Δw = dw/dt.

— Волновое уравнение:

Δw = d2w/dt2.

Впрочем, идея этого уравнения и функции, следующей из него, — Симеон Дени Пуассон (1781-1840) и позже, в 1828 году, Джордж Грин (1793-1841) назвали ее потенциальной функцией — уже прослеживалась в работах, написанных ранее Эйлером и Лагранжем, а Лаплас первым упомянул эти две формулы в своих исследованиях тяготения. Это уравнение и эта функция сыграют фундаментальную роль в последующих работах, касающихся тепла, электричества и магнетизма. Удивительно также, что уравнение Лапласа и многочлены Лежандра необходимы для описания поведения электронов и атомов: двумя веками позже они снова появятся в фундаментальном уравнении квантовой механики — в уравнении Шрёдингера.

Аристотель считал кометы феноменами атмосферного характера. Но позже математики вызвались подправить древнюю теорию и описать траекторию этих небесных странников, которые в народе считаются предвестниками беды. Чтобы убедиться в универсальности закона тяготения, необходимо было сделать следующий решительный шаг: применить этот закон к телам, которые перемещаются вне Солнечной системы. Не будем забывать, что существование комет позволяло опровергнуть теорию декартовых вихрей. Если кометы могли пересекать Солнечную систему, не втягиваясь в вихревые потоки, возможно, это означало, что вокруг Солнца просто не существует этих потоков?

В «Началах» Ньютон написал, что кометы также подвержены закону тяготения, а значит, они должны описывать замкнутую траекторию. Ученый уже уподобил движение снарядов параболам, а движение планет — кругам или эллипсам. После этого у него появилась идея сравнить движение комет с одним из конических сечений — кругом, эллипсом, параболой или гиперболой. Если комета описывает круг или эллипс, даже очень вытянутый, она должна регулярно появляться. Но если ее орбита имеет форму параболы или гиперболы, значит, следуя по открытой орбите, комета проходит через Солнечную систему и исчезает в необъятной Вселенной. Поскольку период обращения большинства комет, наблюдаемых с Земли, намного превышает длительность жизни астрономов, ученые долгое время и не подозревали, что кометы, как и планеты, описывают закрытые эллиптические орбиты.

Адриен Мари Лежандр (1752-1833), наряду с Лапласом и Лагранжем, является третьей «Л» французской математики той эпохи. Он поддерживал тесные научные контакты с Лапласом, который был старше его всего на три года, и систематически становился его преемником на различных должностях.