Добавить в цитаты Настройки чтения

Страница 10 из 31



Анализ уравнений орбитального движения очень сложен для того, чтобы приводить его здесь. Если дифференциальные уравнения, описывающие движение системы из двух тел, линейны, то уравнения для системы из трех и более тел нелинейны. Для поиска решений необходимо воспользоваться методом приближений. Решение нелинейного дифференциального уравнения, соответствующего проблеме с учетом возмущений, может быть найдено путем решения аналогичного линейного уравнения — в котором не учитывается влияние третьего тела — и затем введения в полученный результат возмущения. Иными словами, мы находим приблизительное решение проблемы трех тел, используя наши знания о проблеме двух тел. Таким образом, решение нелинейного уравнения с возмущениями строится на соответствующей корректировке решения обычного уравнения (линейного).

Главное при этом — с необходимой точностью определить степень возмущения (которое в нашем случае является периодическим). Лаплас длительное время вычислял возмущения, которые испытывают планеты, при этом в уравнениях он сохранял основные элементы (первые члены) и отклонял другие, слишком ничтожные. Решения, к которым он таким образом пришел, были не точными, а приблизительными. Однако даже эта неточность позволяла делать достоверные прогнозы, учитывая следующее:

— 99,87 % общей массы Солнечной системы приходится на Солнце.

Вследствие этого орбиты планет являются эллиптическими, поскольку центробежные силы планет слабы по отношению к тяготению Солнца.

— На Юпитер приходится 70 % планетной массы, что оказывает значительное влияние на остальные планеты. Таким образом, в системе, состоящей из Солнца, Юпитера и Сатурна, считается, что вторая планета, наряду с Солнцем, воздействует на движение третьей. Это же справедливо и для движения Юпитера, поскольку Сатурн является второй планетой Солнечной системы по размерам и массе после Юпитера.

— Мы исходим из предположения, что ни Юпитер, ни Сатурн не возмущают движение Солнца. Также если бы вместо Сатурна речь шла о другой — меньшей — планете, то сила тяготения, действующая на Юпитер, была бы ничтожной, что упростило бы расчеты.

Лапласу теперь оставалось объяснить аномалию движения Луны, что он сделал в своих трудах, представленных в 1787 и 1788 годах под названием «О возмущениях движения Луны». Благодаря близкому расположению к Земле движение Луны было исследовано лучше всего. В 1693 году Галлей констатировал заметное ускорение ее среднего движения по отношению к продолжительности, указанной древнегреческими астрономами. Отметим, что на наш спутник воздействует сила тяготения не только со стороны Земли, но и со стороны Солнца, постоянно отклоняющего Луну от воображаемого эллипса, который должна представлять ее орбита.

Когда Лаплас принялся за эту проблему, Лагранж уже добился значительных успехов в применении закона всемирного тяготения к конкретной проблеме лунной механики, что принесло ему премию Парижской академии наук: в 1764 году он предложил объяснение феномена либрации Луны.



Луна всегда обращена к нам одной стороной, но мы не всегда видим ее одинаковую долю. Учитывая, что наш спутник совершает легкие колебания в пространстве, мы можем видеть небольшую часть ее скрытой стороны (в частности, с Земли мы можем наблюдать до 59% лунной поверхности, то есть больше ожидаемых 50%).

Теория возмущений приведет в конечном итоге к открытию Нептуна и Плутона (в 1846 и в 1930 годах соответственно) — двух планет, расположенных в самых отдаленных участках Солнечной системы.

Исследование отклонений траектории планет играет важную роль в предсказании существования новых звезд до того, как они будут замечены в телескоп. Исходя из несовпадения между положением Урана, соответствующим теории тяготения, и реально наблюдаемым положением Джон Куч Адамс (1819-1892) и Урбен Леверье (1811-1877) пришли к выводу, что на движение Урана воздействует какая-то еще более удаленная планета. Это предположение подтвердил ночью 23 сентября 1846 года астроном Иоганн Готтфрид Галле (1812- 1910), работавший в обсерватории Берлина. Так был открыт Нептун. Кроме этого Леверье всегда считал, что аномалии в движении Меркурия также можно объяснить существованием неизвестной планеты — это небесное тело под названием Вулкан могло бы располагаться между Солнцем и Меркурием и воздействовать на орбиту последнего. Однако исследования в этом направлении не принесли результатов: известно, что Леверье долгое время принимал за Вулкан солнечное пятно, проплывающее по диску светила. Сегодня мы знаем, что для объяснения аномального движения Меркурия недостаточно механики Ньютона: необходимо прибегнуть к теории относительности Эйнштейна.

Этот вопрос достаточно естественно вписался в задачу трех тел в отношении системы Солнце — Земля — Луна и требовал тщательного исследования лунных колебаний, которые вызывали Земля и Солнце благодаря силе тяготения,— и Лагранж блестяще справился с задачей. Колебательное движение Луны также оказалось не вековым, а периодическим. Лаплас мог аналогично объяснить и все прочие аномалии движения Луны. Он нашел приблизительные решения, опираясь на идею о том, что Солнце ввиду своей удаленности от Земли и Луны мало влияет на движение этих небесных тел. Не было никакой причины считать, что наш спутник слишком сильно приблизится к Земле или отдалится по направлению к Солнцу. Ускорение движения Луны, наблюдаемое в течение последних веков, объясняется изменением эксцентриситета земной орбиты, но эти изменения компенсируются, так как мы имеем дело с периодическими движениями, и Луна после ускорения начнет замедляться. Лаплас писал: 

«Эти неравенства не всегда возрастают. Они периодические, как и неравенства эксцентриситета земной орбиты, от которых они зависят, и восстанавливаются лишь через миллионы лет». 

Наконец, Лаплас смог доказать, что орбиты планет и их спутников понемногу меняются, но всегда в некоторых пределах. Изменения эксцентриситета и наклонения орбит всегда остаются незначительными и ограниченными. Последствия периодических возмущений не являются разрушительными — они компенсируются. Аномалии, обнаруженные в движении Солнечной системы в течение коротких периодов времени, полностью исчезают при рассмотрении более длительных промежутков. Лаплас доказал все это на основе анализа и закона всемирного тяготения. Ньютон мог спать спокойно: он одержал победу.

С задачей трех тел и орбитальными аномалиями тесно связан вопрос стабильности Солнечной системы (состоявшей в то время из восьми тел: Солнца и семи известных планет, не считая их спутников). Его решение зависело от решения задачи трех тел. В области астрономии решение проблемы п тел равносильно тому, чтобы спросить самого себя, как будет выглядеть небо через год, через 100 лет и миллиард лет. Как мы уже увидели, Ньютон знал, что для двух тел задача могла быть решена с высокой точностью в любой данный момент; но все менялось, когда во взаимодействие с двумя первыми телами входило третье. Воздействие планет было слабым по сравнению с гравитационным притяжением Солнца, но все же не ничтожным. Более того, в долгосрочной перспективе это воздействие могло отклонить планету с ее орбиты или даже вытеснить из Солнечной системы. Межпланетные взаимодействия могли повредить красивые кеплеровские эллипсы и не давали возможности предсказать поведение системы в отдаленном будущем. В своей работе De motu corporum in gyrum («Движение тел на орбите», 1684) Ньютон утверждал, что планеты движутся не по совершенному эллипсу и никогда не повторяют одну и ту же орбиту два раза. Он также признал, что предсказание долгосрочных движений значительно превосходит человеческие способности.