Добавить в цитаты Настройки чтения

Страница 24 из 41

Рибосомальный синтез белка оказался чрезвычайно устойчивым к непосредственному действию радиации. Однако его интенсивность очень чувствительна к регуляторным влияниям организма.

В соответствии с предложенным А. С. Спириным механизмом работы рибосомы стали в определенной мере понятны и молекулярные механизмы известных давно ошибок рибосомального синтеза белка, зависящие от самой рибосомы.

Известно, что противобактериальное действие ряда аминоглюкозидных антибиотиков (стрептомицин, канамицин, неомицин и др.) связывается со способностью их вызывать ошибки кодирования рибосомального синтеза белка, и это было показано экспериментально на бесклеточных системах.

В работах А. С. Спирина и его коллег было изучено влияние указанных антибиотиков на цикл работы рибосомы и показано, что все они ускоряли стабилизацию ассоциированных субчастиц рибосомы. Кроме того, установлено, что бивалентные ионы магния, кальция, марганца и ряд некоторых агентов также увеличивали (ускоряли) стабилизацию (т. е. смыкание) субчастиц рибосомы. Так, изменение концентрации магния на 1 мМ существенно (примерно на 10%) изменяло вероятность нахождения рибосомальных субчастиц в связанном состоянии (т. е. в сомкнутом). Наоборот, одновалентные катионы натрия, калия и других уменьшали вероятность нахождения субчастиц рибосомы в сомкнутом состоянии. Увеличение концентрации их в бесклеточной среде примерно на 10 мМ уменьшало долю связанных субчастиц на 10—20%.

Все факторы, которые ускоряли стабилизацию субчастиц рибосомы, способствовали увеличению ошибок кодирования рибосомального синтеза белка. Это было особенно четко показано в экспериментах с бактериальными рибосомами в бесклеточной среде на примере использования полиуридиновой матрицы, кодирующей аминокислоту фенилаланина.





Вместо фенилаланина рибосома в небольшом проценте случаев включала в полипептидную цепь лейцин и изолейцин и значительно реже серин, тирозин и валин. Однако при добавлении в среду, например, стрептомицина и ионов магния ложное кодирование, определявшееся по отношению включенного в полипептидную цепь лейцина к фенилаланину, увеличивалось с 5 до 32%, т. е. в 6 раз. Особенно сильно влияние ионов магния и натрия. Так, по кривым зависимости числа ошибок включения лейцина видно, что изменение концентрации Mg с 1,0 до 2,0 мМ увеличило ошибки более чем в 3 раза (до 17%).

В терминах модели А. С. Спирина повышенная вероятность сомкнутого состояния рибосомы должна приводить к повышению ложного кодирования. Все факторы, ускоряющие стабилизацию сомкнутого состояния рибосомы, должны увеличивать ошибочное включение аминокислот в пептидную цепь. Среди них изучено влияние ионов магния, кальция, марганца и некоторых других. Противоположным действием обладают ионы натрия, калия и другие одновалентные катионы.

Таблица 3. Аминокислотный код (указаны нуклеотиды кодонов и соответствующие им аминокислоты)