Добавить в цитаты Настройки чтения

Страница 12 из 44

Активные галактические ядра на сегодня считаются одним из доказательств того, что существуют черные дыры. Их масса в миллиарды раз больше солнечной. Ничем иным, кроме черной дыры, такая масса быть не может, во всяком случае, астрономы пока не изобрели ничего другого.

Но как же попадает материал на черную дыру в центре ядра? Из анализа наблюдений получается, что из плотного диска вещества, вращающегося вокруг центра. Эта модель была создана еще в начале семидесятых годов Николаем Шакурой и Рашидом Сюняевым из Москвы. Скорость вращения на внутренних частях диска гораздо больше, чем на его краях. Вещество постепенно перетекает с внешних окрестностей внутрь.

Каким-то образом звезда ускоряет некоторые частицы до очень высоких энергий, а они уже излучают энергичные гамма-кванты. Этот процесс рассчитали в 1980 году все те же Сюняев и Лев Титарчук в Москве, а потом и ipy

Есть две гипотезы. Первая основана на том, что магнитное поле в диске аккреции может быть перекручено причудливым образом из-за сложных спиральных путей падающей на звезду материи. Крис Тут и Джив Прингл из Кембриджа показали, что в принципе подобная конфигурация магнитных полей может ускорять частицы.

Вторая гипотеза связана с тем, что при переходе вещества через звуковой барьер возникают ударные волны, и они могут ускорять протоны, дающие потом множество вторичных частиц. Изучая спектр излучения от диска аккреции, ученые надеются понять, как выглядит гравитационное поле вблизи черной дыры и как идет процесс падения на нее вещества.

Таковы главные направления астрофизики высоких энергий. Область молодая, развивающаяся, неустоявшаяся, но очень интересная. Ее тематика, с одной стороны, охватывает всю Вселенную, а с другой – уходит на уровень мельчайших квантов вещества – нейтрино. Да и по времени – от рождения космоса до наших дней. Попросту говоря, наука обо всем пространстве и обо всем времени. У вас не захватывает дух?

Рафаил Нуделъман

Судьбы Вселенной





Впору давать объявление: «Потерялась теория. Нашедшего просят вернуть…» и так далее. Нет, в самом деле, я еще живо помню, как на лекциях в университете нам излагали теорию тепловой смерти Вселенной и как затруднялись наши лекторы по марксизму вколотить в наши недоверчивые головы, что теория эта неверна.

Теория, как назло, выглядела весьма убедительно. Тепло само собой переходит от нагретых тел к менее нагретым, так что их температура выравнивается – стало быть, спустя некое время во Вселенной должна наступить «тепловая смерть», ибо все процессы во Вселенной происходят в конечном счете в силу разности температур. К примеру, все, что происходит на Земле, включая процессы жизни, имеет источником энергии Солнце, а если бы Солнце и Земля были одинаковой температуры, то никакого потока энергии между ними не было бы никогда.

Теория, повторяю, выглядела убедительно, и беспомощный лепет наших марксистов никак не мог поколебать ее авторитет в наших глазах. Они нам говорили, что рассуждения насчет разностей температур и потоков энергии верны только в замкнутой системе, а поскольку Вселенная бесконечна, то она никак не может считаться замкнутой, а мы недоверчиво смотрели на них с высоты наших амфитеатров и думали: как же она незамкнутая, раз она – Вселенная, то есть за ее пределами все равно ничего нет? Самым забавным во всем этом, как я теперь понимаю, была полная бессмысленность нашего непримиримого противостояния: дело происходило спустя десятки лет после открытия (Эдвином Хабблом) расширения Вселенной, каковое попросту перечеркнуло все споры о тепловой смерти, поскольку рассуждения, приводившие к этой теории, применимы лишь к равновесным состояниям; расширяющаяся же Вселенная не является равновесной. Мы, однако, об этом даже не задумывались, потому что не знали, а наши лекторы и знать не хотели, ибо втиснуть расширение Вселенной, а с ним (поневоле) и релятивистскую космологию Эйнштейна в марксистскую схему природы им было еще труднее, чем втиснуть туда ее, природы, тепловую смерть.

Но вот со времени открытия Хаббла прошло более семидесяти лет, о тепловой смерти, якобы угрожающей Вселенной, все уже и думать забыли, однако заботы о будущем нашего огромного космического дома по-прежнему не оставляют ученых и заставляют их время от времени возвращаться к соответствующим размышлениям и расчетам. Жизнь ведь идет, открываются все новые факты и закономерности, уточняются прежние представления, и на каждом новом этапе приходится пересматривать старые прогнозы: то, что казалось верным и надежным вчера, сегодня уже таким не видится. Как там говорила поэтесса? «Вчера еще в ногах лежал…» Вот именно. Вчера.

Расширение тоже грозит Вселенной (и жизни в ней) многими осложнениями, и не далее как в 1979 году замечательный физик Фримэн Дайсон из Института высших исследований в Принстоне (это тот институт, где в свое время работали Эйнштейн и Гедель) опубликовал статью, в которой впервые привлек внимание коллег к этим осложнениям. Года четыре спустя был предпринят следующий, соответственно осовремененный анализ этих перспектив, а третий, совсем недавний, появился в конце 1999 года. Попробую прежде всего пояснить, чем вызваны эти периодические «переэкзаменовки». Та или иная судьба расширяющейся Вселенной зависит в первую очередь от того, достаточно ли в ней массы (создаваемой веществом и энергией), чтобы преодолеть инерцию первоначального «толчка» (того Большого Взрыва, который примерно 14 миллиардов лет назад швырнул будущую Вселенную во все стороны сразу). Если достаточно, то Вселенная должна в конце концов остановиться и затем начать сжиматься вспять к первоначалу, и тогда всему, что в ней есть, суждено погибнуть в огненной печи той «особой точки», в которую Вселенная стянется на исходе своего очередного «цикла расширение – сжатие». Если же притяжения этой массой самой себя не хватит д ля самоостановки, Вселенной суждено расширяться вечно, и тогда сценарий ее будущего становится еще занятней. Казалось бы – что может быть занятней сжатия «всего» в сверхраскаленную сверхплотную Точку? Противоположное, разумеется, – бесконечное расширение того же «всего» в сверхледяное, сверхразреженное Ничто.

Авторы нового анализа судеб Вселенной, американские университетские физики Краусс и Штаркман, начинают свое изложение словно в сериале – с краткого пересказа предшествующих событий. В данном случае эти события таковы. В начале, когда Вселенная только родилась, она целиком состояла из излучения, порожденного Большим Взрывом. По мере расширения она остывала, пока наконец не достигла температур, при которых могли уже устойчиво существовать частицы вещества. Этот переход легко понять. Если бы мы налили немного воды в закупоренную колбу и поставили ее на огонь, вся вода со временем превратилась бы в пар и не могла бы существовать в ином виде: если бы какие-то молекулы даже и сложились случайно в каплю жидкой воды, то их собственное движение – чудовищно быстрое при такой температуре – сразу разорвало бы эту каплю обратно на отдельные молекулы пара. Однако затем, по мере остывания колбы, скорость движения молекул стала бы намного меньше, и среди них появились бы такие медленные, которые могли бы сложиться в устойчивые капли. Разумеется, это всего лишь грубая аналогия, во Вселенной дело происходило много сложней, но в целом – с тем же результатом: излучение стало остывать (то, что от него осталось, было недавно обнаружено в виде так называемого реликтового, или остаточного, радиационного фона Вселенной); появилось вещество; возникли огромные, космических размеров облака газа; в них образовались многочисленные центры сгущения – будущие звезды; со временем на месте этих облаков образовались первые галактики, а затем и скопления галактик, и вот так в конце концов сложилась та Вселенная, какой мы ее сегодня видим.