Добавить в цитаты Настройки чтения

Страница 12 из 34

Доказательство этого утверждения элементарно и основано на «принципе ящиков», позднее названном в честь Дирихле. Принцип Дирихле представляет собой простое отражение здравого смысла: если мы хотим поместить определенное число голубей в ящики, при этом голубей больше, чем ящиков, то в конечном итоге в одном из ящиков окажется больше одного голубя. Принцип Дирихле полезен при доказательстве определенных математических результатов, среди которых — теорема Дирихле о рациональном приближении. Эта теорема звучит так: для данного иррационального числа а существует бесконечно много дробей вида p/q таких, что |a — p/q| < 1/q2. Доказательство этой теоремы приведено на следующей странице. Этот результат существенно точнее, чем тот, о котором мы говорили выше, так как с увеличением число 1/q2 уменьшается намного быстрее, чем 1/(2·q). Результат Дирихле нельзя улучшить относительно второй степени 1/q. Это тесно связано с разделением иррациональных чисел на алгебраические и трансцендентные.

Рассмотрим √2: это иррациональное число, однако его можно достаточно просто описать последовательностью целых чисел (…, —6, —5, —4, —3, —2, —1, 0, 1, 2, 3, 4, 5, 6…)» так как является решением уравнения с целыми коэффициентами х2  —2 = 0. Числа, которые представляют собой решения уравнения с целыми коэффициентами (вне зависимости от степени уравнения), называются алгебраическими.

* * *

ДИРИХЛЕ И «ПРИНЦИП ЯЩИКОВ»

Доказательство принципа Дирихле выглядит следующим образом. Рассмотрим произвольное иррациональное число а и выберем некоторое натуральное число N. Теперь рассмотрим числа а, 2·а, 3·а…, N·а и (N + 1)·а. Этот список содержит N + 1 число. Для каждого из них (обозначим их в общем виде k·а) найдется натуральное число рk такое, что разность k·арk будет лежать на интервале от 0 до 1. К примеру, если а = √5 = 2,236…, то 2·а = 4,472… и р2 будет равно 4.3·а = 6,708…, р3 будет равно 6 и так далее. Теперь расположим числа от 0 до 1 в N ящиков: в первом ящике окажутся числа от 0 до 1/N, во втором — от 1/N и 2/N и так далее. В последнем ящике окажутся числа от (N — 1)/N до 1. Так как наш список чисел k·арk, k = 1, …, N + 1 содержит N + 1 число, лежащее на интервале от 0 до 1, и мы расположили числа от 0 до 1 в разных ящиках, то, согласно принципу Дирихле, в одном из этих ящиков будет больше одного числа. Допустим, что числа k·арk и n·арn  находятся в одном ящике. Очевидно, что разница между двумя числами в одном ящике меньше 1/N. Отсюда следует, что |k·арk — (n·арn)| < 1/N. Если теперь мы введем обозначения kn и р = рkрn, то получим: |q·ар| < 1/N, или |аp/q| < 1/(q·N). Так как и k, и меньше + 1, получим, что q меньше N. Учитывая, что это число можно считать положительным, имеем |аp/q| < 1/q2. Так как число а иррационально, а N — произвольное натуральное число, неравенство |аp/q| < 1/(q·N) гарантирует, что мы можем найти бесконечно много различных дробей вида p/q, удовлетворяющих неравенству |аp/q| < 1/q2.

* * *

Каким бы монструозным нам ни казалось число

оно является алгебраическим, так как его можно представить как решение уравнения четвертой степени с целыми коэффициентами х4 + 8х — 5 = 0. Все числа, которые не являются алгебраическими, в математике называются трансцендентными. В некотором смысле они максимально далеки от натуральных чисел, которые мы используем при счете.





Самые знаменитые математические константы — обычно трансцендентные числа. Так, трансцендентными являются число π и число е, однако это было доказано лишь в конце XIX века. Трансцендентность числа π имеет удивительное следствие: задача о квадратуре круга не имеет решения. Иными словами, с помощью циркуля и линейки нельзя построить квадрат, равный по площади данному кругу. Задача о квадратуре круга не давала покоя древнегреческим математикам, однако ее решение было найдено лишь в конце XIX столетия. Если мы сравним решение математической задачи с установлением мирового рекорда, то задача о квадратуре круга стала рекордом, который не удавалось превзойти две с половиной тысячи лет!

При поиске приближения алгебраических чисел в виде дробей нельзя найти более точное приближение, чем описанное теоремой Дирихле. Если мы рассмотрим произвольное алгебраическое число а и число k, строго большее 2 (k > 2), то, за некоторыми исключениями (число этих исключений всегда будет конечным), будет выполняться неравенство |а — р/q| > 1/qk.

Это означает, что результат Дирихле нельзя улучшить относительно степени знаменателя. Однако с единицей, «сопровождающей» знаменатель, дело обстоит иначе. В 1891 году другой немецкий математик, Адольф Гурвиц, доказал, что эту константу можно заменить меньшей: 1/√5. Так, для произвольного иррационального числа а существует бесконечно много дробей вида p/q таких, что |а — p/q| < 1/(√5·q2). Гурвиц также доказал, что значение 1/√5 является минимально возможным, поскольку существует еще одна математическая константа, так называемое золотое число, описывающее золотое сечение, Ф = (1 + √5)/2.

Адольф Гурвиц (1859–1919), один из величайших математиков XX столетия, внесший особый вклад в изучение алгебраических кривых и теорию чисел.

Золотое сечение — это соотношение сторон прямоугольника совершенных пропорций. Согласно древнегреческим геометрам, прямоугольник обладает совершенными пропорциями, если при отсечении от него квадрата со стороной, равной меньшей стороне прямоугольника, оставшийся прямоугольник будет иметь прежнее соотношение сторон. Допустим, длина короткой стороны прямоугольника равна а, длинной стороны — b. Следовательно, длины сторон нового прямоугольника будут равны b — а и а. Соотношение сторон прямоугольника будет наиболее гармоничным при b/а = а/(Ь — а). Приняв х = b/а, имеем х = 1/(х — 1), то есть х2 — х — 1 = 0. Положительный корень этого уравнения равен золотому числу Ф = (1 + √5)/2.

Если мы отсечем от прямоугольника золотого сечения бесконечное число квадратов и будем соединять противоположные вершины этих квадратов дугами длиной в четверть окружности, получим спираль золотого сечения, изображенную ниже.

Именно такую форму имеет раковина наутилуса, в виде этой спирали располагаются семена подсолнуха, облака в ураганах и антициклонах и звезды во многих галактиках.